

    
      
          
            
  [image: pypi package]
 [https://pypi.org/project/fast-carpenter/][image: pipeline status]
 [https://travis-ci.com/FAST-HEP/fast-carpenter][image: coverage report]
 [https://codecov.io/gh/FAST-HEP/fast-carpenter][image: Documentation Status]
 [https://fast-carpenter.readthedocs.io/en/latest/?badge=latest][image: Gitter]
 [https://gitter.im/FAST-HEP/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge][image: _images/187055992.svg]
 [https://zenodo.org/badge/latestdoi/187055992][image: fast-carpenter]
 [https://github.com/fast-hep/fast-carpenter]Turns your trees into tables (ie. reads ROOT TTrees, writes summary Pandas DataFrames)

fast-carpenter can:


	Be controlled using YAML-based config files


	Define new variables


	Cut out events or define phase-space “regions”


	Produce histograms stored as CSV files using multiple weighting schemes


	Make use of user-defined stages to manipulate the data




Powered by:


	AlphaTwirl (presently): to run the dataset splitting


	Atuproot: to adapt AlphaTwirl to use uproot


	uproot: to load ROOT Trees into memory as numpy arrays


	fast-flow: to manage the processing config files


	fast-curator: to orchestrate the lists of datasets to be processed


	Espresso: to keep the developer(s) writing code




A tool from the Faster Analysis Software Taskforce: http://fast-hep.web.cern.ch/


Contents:


	Installing
	From Pypi

	From Source





	Key Concepts
	Goals of fast-carpenter
	From the user’s perspective

	From the code and development perspective





	Overall approach for data-processing
	Step 1: Create dataset configs

	Step 2: Write a processing config

	Step 3: Run fast_carpenter

	Step 4: Produce plots









	Command-line Usage
	fast_curator

	fast_curator_check

	fast_carpenter

	fast_plotter





	The Processing Config
	Anatomy of the config

	Built-in Stages

	Used-defined Stages





	Example repositories
	Related Presentations





	Glossary






Code reference


	fast_carpenter package

	fast_carpenter.backends package

	fast_carpenter.backends.alphatwirl module

	fast_carpenter.backends.coffea module

	fast_carpenter.define package

	fast_carpenter.define.reductions module

	fast_carpenter.define.systematics module

	fast_carpenter.define.variables module

	fast_carpenter.event_builder module

	fast_carpenter.expressions module

	fast_carpenter.help module

	fast_carpenter.masked_tree module

	fast_carpenter.selection package

	fast_carpenter.selection.filters module

	fast_carpenter.selection.stage module

	fast_carpenter.summary package

	fast_carpenter.summary.aghast module

	fast_carpenter.summary.binned_dataframe module

	fast_carpenter.summary.binning_config module

	fast_carpenter.summary.event_level_dataframe module

	fast_carpenter.summary.import_aghast module

	fast_carpenter.tree_wrapper module

	fast_carpenter.utils module

	fast_carpenter.version module






Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
Installing


From Pypi

The simplest way to install things is from pypi.

pip install fast-carpenter





Note: In general it’s better to install this in a specific environment (e.g. using virtualenv [https://virtualenv.pypa.io/en/stable/] or better still conda [https://docs.conda.io/en/latest/miniconda.html] ).

Otherwise you might need to use the --prefix or --user options for pip install.
If you do provide any of these options, make sure you have the /bin directory in your PATH (e.g. if you used --user this will be mean you need ~/.local/bin included in the PATH).
Using virtaulenv or conda will avoid this complication




From Source

If you want to edit the code or contribute something back, you might want to install things directly from github.
Any of these options should work:

Directly with pip:

pip install -e 'git+https://github.com/FAST-HEP/fast-carpenter.git#egg=fast_carpenter' --src .





Clone first and install:

git clone https://github.com/FAST-HEP/fast-carpenter.git
cd fast-carpenter
python setup.py develop











          

      

      

    

  

    
      
          
            
  
Key Concepts


Goals of fast-carpenter


From the user’s perspective

fast-carpenter’s principal goal is to help a user ask “what do I want to see” as opposed to “how do I implement this” which has been the more traditional way of thinking for a particle physics analyst.

In that sense, most of the control of this code is “declarative” in the sense that a user should typically not have to say how to move data through the analysis, only what they want it to do.
That way fast-carpenter can make decisions behind the scenes as to how to handle this.
Python dictionaries are therefore the main way to configure carpenter, which we describe using YAML [https://en.wikipedia.org/wiki/YAML].


	The net result of this should mean:

	
	What the user writes is closer to the actual mathematical description of what they want to do.


	There is less actual analysis “code” and so less opportunity to put bugs in the analysis.


	It should be quick to do a simple study, and then scale smoothly to a full-blown analysis.


	Python dictionaries can be built easily in other tools, and so fast-carpenter directly called from inside a Jupyter notebook, for example.


	When you want to do something more exotic, which is not (yet) catered for in fast-carpenter itself, there is an easy “plugin” style system to add your own custom code into the processing.








Although fast-carpenter is focussed on input ROOT trees at this point (which inspires its name), this may well evolve in the future.




From the code and development perspective


	We have tried to make the code as modular as possible (hence fast-flow and fast-curator not being contained in this package).


	Wherever possible, we’ve tried to avoid writing code; if an existing package does that task, use it.


	If another tool provides most but not all of a wanted functionality, we prefer contributing to that package over putting code in here.


	Keep functions simple (e.g. under the mccabe metrics).


	Unit-tests should be clear, and are as important as documentation; ideally the two can serve a similar purpose.









Overall approach for data-processing

fast-carpenter is intended to be the first step in the main analysis pipeline.
It is expected to be the only part of the processing chain which sees “event-level” data, and produces the necessary summary of this in a tabular form (which invariably means binned as histograms).
Subsequent steps can then manipulate these to produce final analysis results, such as graphical figures, or doing some functional fit to the binned data.

For public examples of working with fast-carpenter and the other FAST tools, see Example repositories.


Step 1: Create dataset configs

fast-carpenter needs to know what input files to use, and will often need extra metadata (for example, does this data represent real or simulated data).
This is where the fast-curator [https://github.com/FAST-HEP/fast-curator] package comes in.
It provides the fast_curator command which we use to generate descriptions of the input files in a format that is both human and machine readable, using YAML [https://en.wikipedia.org/wiki/YAML].
These can then be put in a repository and updated periodically with extra meta-data, or when new data becomes available.

See the fast_curator section of the command lines tools for in-depth discussion of the fast_curator command which can automate the process of making these configs.




Step 2: Write a processing config

The next step is to prepare the “processing configuration” which defines what you want to do with this data.
This has to be written by hand, and is the core of what you want to spend time on as an analyzer.
Behind the scenes, this config file is interpreted using the small fast-flow [https://gitlab.cern.ch/fast-hep/public/fast-flow] package; documentation there might also be of interest.

For details about how to write this config file, see The Processing Config.




Step 3: Run fast_carpenter

You can now run the fast_carpenter command, giving it the dataset and processing configurations from the previous steps.
Depending on how many files you have and what type of computing resources (e.g. multiple cpus, batch systems) you might want to use some of the different processing modes.

For more on how to use the fast_carpenter command, see the fast_carpenter section of the command line tools.




Step 4: Produce plots

In order to visualise the results of running fast_carpenter, you can use the fast-plotter package, which gives you both a command-line interface and helper python functions to
produce plots from the dataframes.
Fine tuning of the command-line plots is again possible using a YAML configuration file.

See the dedicated fast-plotter documentation [http://fast-plotter.readthedocs.io/] for more guidance on this package.









          

      

      

    

  

    
      
          
            
  
Command-line Usage

The command-line tools are the primary way to use fast-carpenter and friends at this point.
All of the FAST commands provide built-in help by providing the --help option.


fast_curator

The fast-curator package handles the description of the input datasets.
These are saved as YAML [https://en.wikipedia.org/wiki/YAML] files, which contain a dictionary that lists the different datasets, the list of files for each dataset, and additional meta-data.

You can build these files semi-automatically by using the fast_curator command.
This can be called once per dataset and given a wildcarded expression for the input files of this dataset, which it will then expand, build some simple summary meta-data (number of events, number of files, etc) and write this to an output YAML file.
If the output file already exists, and is a valid fast-curator description, the new information will be appended to the existing file.

Input ROOT files can also be stored on xrootd servers, with a file-path specified by the root:// protocol.
You can also provide wild-cards for such files, but make sure to check that you pick all files that you expect; wildcarded searches on xrootd directories can depend on permissions, access rights, storage mirroring and so on.

For an in-depth description of the dataset description files, see the fast-curator pages [https://github.com/FAST-HEP/fast-curator].

$ fast_curator --help
usage: fast_curator [-h] -d DATASET [-o OUTPUT] [--mc] [--data] [-t TREE_NAME]
                    [-u USER] [-q QUERY_TYPE] [--no-empty-files]
                    [--allow-missing-tree]
                    [--ignore-inaccessible IGNORE_INACCESSIBLE] [-p PREFIX]
                    [--no-defaults-in-output] [--version] [-m META]
                    [files [files ...]]

positional arguments:
  files

optional arguments:
  -h, --help            show this help message and exit
  -d DATASET, --dataset DATASET
                        Which dataset to associate these files to
  -o OUTPUT, --output OUTPUT
                        Name of output file list
  --mc                  Specify if this dataset contains simulated data
  --data                Specify if this dataset contains real data
  -t TREE_NAME, --tree-name TREE_NAME
                        Provide the name of the tree in the input files to
                        calculate number of events, etc
  -u USER, --user USER  Add a user function to extend the dataset dictionary,
                        eg. my_package.my_module.some_function
  -q QUERY_TYPE, --query-type QUERY_TYPE
                        How to interpret file arguments to this command.
                        Allows the use of experiment-specific file catalogues
                        or wild-carded file paths. Known query types are:
                        xrootd, local
  --no-empty-files      Don't include files that contain no events
  --allow-missing-tree  Allow files that don't contain the named tree in
  --ignore-inaccessible IGNORE_INACCESSIBLE
                        Don't include files that can't be opened
  -p PREFIX, --prefix PREFIX
                        Provide a common prefix to files, useful for
                        supporting multiple sites
  --no-defaults-in-output
                        Explicitly list all settings for each dataset in
                        output file instead of grouping them in default block
  --version             show program's version number and exit
  -m META, --meta META  Add other metadata (eg cross-section, run era) for
                        this dataset. Must take the form of 'key=value'








fast_curator_check

Sometimes it can be useful to check that you’re dataset config files are valid, in particular if you use the import section (which allows you to include dataset configs from another file).
The fast_curator_check command can help you by expanding such sections and dumping the result to screen or to an output file.

$ fast_curator_check --help
usage: fast_curator_check [-h] [-o OUTPUT] [-f FIELDS] [-p PREFIX]
                          files [files ...]

positional arguments:
  files

optional arguments:
  -h, --help            show this help message and exit
  -o OUTPUT, --output OUTPUT
                        Name of output file list to expand things to
  -f FIELDS, --fields FIELDS
                        Comma-separated list of fields to dump for each
                        dataset
  -p PREFIX, --prefix PREFIX
                        Choose one of the file prefixes to use








fast_carpenter

The fast_carpenter is the star of the show.
It is what actually converts your event-level datasets to the binned summaries.

The built-in help should tell you everything you need to know:

$ fast_carpenter --help
usage: fast_carpenter [-h] [--outdir OUTDIR] [--mode MODE] [--ncores NCORES]
                      [--nblocks-per-dataset NBLOCKS_PER_DATASET]
                      [--nblocks-per-sample NBLOCKS_PER_SAMPLE]
                      [--blocksize BLOCKSIZE] [--quiet] [--profile]
                      [--help-stages [stage-name-regex]]
                      [--help-stages-full stage] [-v]
                      dataset_cfg sequence_cfg

Chop up those trees into nice little tables and dataframes

positional arguments:
  dataset_cfg           Dataset config to run over
  sequence_cfg          Config for how to process events

optional arguments:
  -h, --help            show this help message and exit
  --outdir OUTDIR       Where to save the results
  --mode MODE           Which mode to run in (multiprocessing, htcondor, sge)
  --ncores NCORES       Number of cores to run on
  --nblocks-per-dataset NBLOCKS_PER_DATASET
                        Number of blocks per dataset
  --nblocks-per-sample NBLOCKS_PER_SAMPLE
                        Number of blocks per sample
  --blocksize BLOCKSIZE
                        Number of events per block
  --quiet               Keep progress report quiet
  --profile             Profile the code
  --help-stages [stage-name-regex]
                        Print help specific to the available stages
  --help-stages-full stage
                        Print the full help specific to the available stages
  -v, --version         show program's version number and exit





In its simplest form therefore, you can just provide a dataset config and a processing config and run:

fast_carpenter datasets.yml processing.yml





Quite often you will want to use some of the acceleration options which allow you to process the jobs more quickly using multiple cpu cores, or by running things on a batch system.
When you do this, the fast_carpenter command will submit tasks to the batch system and wait for them to finish, so you need to make sure the command is not killed in between e.g. by running fast-carpenter on a remote login node and breaking or losing the connection to that login.  Use a tool tmux or screen in such cases.

To use multiple CPUs on the local machine, use --mode multiprocessing (this is the default, so not generally needed) and specify the number of cores to use, --ncores 4.

fast_carpenter --ncores 4 datasets.yml processing.yml





Alternatively, if you have access to an htcondor or SGE batch system (i.e. qsub), then the fast_carpenter command can submit many tasks to un at the same time using the batch system.
In this case you need to choose an appropriate option for the --mode option.  In addition the options with block in them can control how many events are processed on each task and for each dataset.


Note

For all modes,  the --blocksize option can be helpful to present fast-carpenter reading too many events into memory in one go.
It’s default value of 100,000 might be too large, in which case reducing it to some other value (e.g. 20,000) can help.
Common symptons of the blocksize being too large are:



	Extremely slow processing, or


	Batch jobs crashing or not being started












fast_plotter

Once you have produced your binned dataframes, the next thing you’ll likely want to do is to make these into figures.
The fast_plotter command and library can help with this.
Its command-line interface gives a simple way to make plots from the dataframes with reasonable defaults, whereas its internal functions can be useful when needing more specific ways or presenting results.


System Message: ERROR/6 (/home/docs/checkouts/readthedocs.org/user_builds/fast-carpenter/checkouts/stable/docs/command_line.rst, line 80)

Command 'fast_plotter --help' failed: [Errno 2] No such file or directory: 'fast_plotter': 'fast_plotter'




See also

See the dedicated fast-plotter documentation [http://fast-plotter.readthedocs.io/] for more guidance on this package.









          

      

      

    

  

    
      
          
            
  
The Processing Config

The processing config file tells fast-carpenter what to do with your data and
is written in YAML [https://en.wikipedia.org/wiki/YAML].

An example config file looks like:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	stages:
    - jet_cleaning: fast_carpenter.Define
    - event_selection: fast_carpenter.CutFlow
    - histogram: fast_carpenter.BinnedDataframe

jet_cleaning:
    variables:
        - BtaggedJets: Jet_bScore > 0.9
        - nBJets: {reduce: count, formula: BtaggedJets}

event_selection:
    selection:
        All:
            - nElectron == 0
            - nJet > 1
            - {reduce: 0, formula: Jet_pt > 100}
            - Any:
                - HT >= 200
                - MHT >= 200

histogram:
    binning:
        - {in: nJet}
        - {in: nBJets}
        - {in: MET, out: met, bins: {edges: [0, 200, 400, 700, 1000]}
    weights: weight_nominal







Other, more complete examples are listed in Example repositories.


Tip

Since this is a YAML file, things like anchors and block syntax are totally valid, which can be helpful to define “aliases” or reuse certain parts of a config.
For more guidance on YAML, this is a good overview of the concepts and syntax: https://kapeli.com/cheat_sheets/YAML.docset/Contents/Resources/Documents/index.




Anatomy of the config


	The stages section

	This is the most important section of the config because it defines what steps to take with the data.
It uses a list of single-length dictionaries, whose key is the name for the stage (e.g. histogram) and whose values is the python-importable class that implements it (e.g. fast_carpenter.BinnedDataframes).
The following sections discuss what are valid stage classes.
Lines 1 to 4 of the config above show an example of this section and others can be found in the linked Example repositories.



	Stage configuration sections

	Each stage must be given a complete description by adding a top-level section in the yaml file with the same name provided in the stages section.
This should then contain a dictionary which will be passed as keyword-arguments to the underlying class’ init method.
Lines 22 to 26 of the above example config file show how the stage called histogram is configured.
See below for more help on configuring specific stages.



	Importing other config files

	Sometimes it can be helpful to re-use one config in another, for example, defining a list of common variables and event selections, but then changing the BinnedDataframes that are produced.
The processing config supports this by using the reserved word IMPORT as the key for a stage, followed by the path to the config file to import.
If the path starts with {this_dir} then the imported file will be located relative to the directory of the importing config file.

For example:

- IMPORT: "{this_dir}/another_processing_config.yml"










See also

The interpretation of the processing config is handled by the fast-flow
package [https://gitlab.cern.ch/fast-hep/public/fast-flow] so its
documentation can also be helpful to understanding the basic anatomy and
handling.






Built-in Stages

The list of stages known to fast_carpenter already can be found using the built-in --help-stages option.

$ fast_carpenter --help-stages
fast_carpenter.Define
   config: variables
   purpose: Creates new variables using a string-based expression.

fast_carpenter.SystematicWeights
   config: weights, out_format=weight_{}, extra_variations=[]
   purpose: Combines multiple weights and variations to produce a single event weight

fast_carpenter.CutFlow
   config: selection_file=None, keep_unique_id=False, selection=None, counter=True, weights=None
   purpose: Prevents subsequent stages seeing certain events.

fast_carpenter.SelectPhaseSpace
   config: region_name, **kwargs
   purpose: Creates an event-mask and adds it to the data-space.

fast_carpenter.BinnedDataframe
   config: binning, weights=None, dataset_col=True, pad_missing=False, file_format=None
   purpose: Produces a binned dataframe (a multi-dimensional histogram).

fast_carpenter.BuildAghast
   config: binning, weights=None, dataset_col=True
   purpose: Builds an aghast histogram.

fast_carpenter.EventByEventDataframe
   config: collections, mask=None, flatten=True
   purpose: Write out a pandas dataframe with event-level values





Further guidance on the built-in stages can be found using --help-stages-full and giving the name of the stage.
All the built-in stages of fast_carpenter are available directly from the fast_carpenter module, e.g. fast_carpenter.Define.


See also

In-depth discussion of the built-in stages and their configuration can be found on the fast_carpenter module page: fast_carpenter, or directly at:



	fast_carpenter.Define


	fast_carpenter.SystematicWeights


	fast_carpenter.CutFlow


	fast_carpenter.SelectPhaseSpace


	fast_carpenter.BinnedDataframe


	fast_carpenter.BuildAghast










Todo

Build that list programmatically, so its always up to date and uses the built-in docstrings for a description.






Used-defined Stages

fast-carpenter is still evolving, and so it is natural that many analysis tasks cannot be implemented using the existing stages.
In this case, it is possible to implement your own stage and making sure it can be imported by python (e.g. by setting the PYTHONPATH variable to point to the directory containing its code).
The class implementing a custom stage should provide the following methods:


	
__init__(name, out_dir, ...)

	This is the method that will receive configuration from the config file, creating the stage itself.


	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – will contain the name of the stage as given in the config file.


	out_dir (path) – receives the path to the output directory that should be used if the stage produces output.








Additional arguments can be added, which will be configurable from the processing config file.






	
event(chunk)

	Called once for each chunk of data.


	Parameters

	chunk – provides access to the dataset configuration (chunk.config)
and the current data-space (chunk.tree).  Typically one wants an array,
or set of arrays representing the data for each event, in which case these
can be obtained using:

jet_pt = chunk.tree.array("jet_pt")
jet_pt, jet_eta = chunk.tree.arrays(["jet_pt", "jet_eta", outputtype=tuple)





If your stage produces a new variable, which you want other stages to be able to see, then use the new_variable method:

chunk.tree.new_variable("number_good_jets", number_good_jets)





For more details on working with chunk.tree, see fast_carpenter.masked_tree.MaskedUprootTree.





	Returns

	True or False for whether to continue processing the chunk through subsequent stages.



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










See also

An example of such a user stage can be seen in the cms_public_tutorial demo repository:
https://gitlab.cern.ch/fast-hep/public/fast_cms_public_tutorial/blob/master/cms_hep_tutorial/__init__.py




Warning

Make sure that your stage can be imported by python, most likely by setting the PYTHONPATH variable to point to the containing directory.
Then to check a stage called AddMyFancyVar and defined in a module called my_custom_module can be imported, make sure no errors are raised by doing:

python -c "import my_custom_module.AddMyFancyVar"








Todo

Describe the collector and merge methods to allow a user stage to save results to disk.









          

      

      

    

  

    
      
          
            
  
Example repositories



	A full demo based on the public CMS tutorial using 2012 data: https://github.com/FAST-HEP/fast_cms_public_tutorial








Related Presentations


	IRIS-HEP, 4th March 2019: https://indico.cern.ch/event/802182/contributions/3334624/


	Analysis Descrition Languages for the LHC, 7th May 2019: https://indico.cern.ch/event/769263/contributions/3406084/










          

      

      

    

  

    
      
          
            
  
Glossary


	cut-flow

	A series of “cuts” which remove events from the processing.



	data-space

	The current set of variables known to fast-carpenter and passed between stages.
Stages can modify the data-space which will affect what subequent stages see.
Before any stages have been run, the data-space contains only those variables
given in the input datasets.



	processing config

	A YAML-based description of the way the input data should be processed.



	processing stage

	A single step in the processing chain, which can modify the data-space or produce new outputs.



	dataset config

	A YAML-based description of the input files which form the datasets to be processed.



	expression

	A string representing some mathematical manipulation of variables in the data-space.



	dataframe

	A programmatic interface to a table-like representation of data.
In the context of fast-carpenter, “dataframe” will usually refer to the
pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] implementation.



	jagged array

	A generalisation of a multi-dimensional numpy array where the length of
each sub-array in the second (and third, and fourth, and so on) dimension
can vary.  For example, if each event contains a list of particles produced
in that event, this would be represented by a jagged array, since there can
be different numbers of particles in each event.  Typically for
fast-carpenter, a jagged array refers to the specific implementation from
the awkward-array package [https://github.com/scikit-hep/awkward-array]









          

      

      

    

  

    
      
          
            
  
fast_carpenter package

Top-level package for fast-carpenter.


	
class fast_carpenter.Define(name, out_dir, variables)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/variables.py#L15-L75]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Creates new variables using a string-based expression.

There are two types of expressions:



	Simple formulae, and


	Reducing formulae.







The essential difference, unfortunately, is an internal one: simple
expressions are nearly directly handled by numexpr [https://numexpr.readthedocs.io/en/latest/], whereas reducing expressions
add a layer on top.

From a users perspective, however, simple expressions are those that
preserve the dimensionality of the input.  If one of the input variables
represents a list of values for each event  (whose length might vary), then
the output will contain an equal-length list of values for each event.

If, however, a reducing expression is used, then there will be one less
dimension on the resulting variable.  In this case, if an input variable
has a list of values for each event, the result of the expression will only
contain a single value per event.


	Parameters

	variables (list [https://docs.python.org/3/library/stdtypes.html#list][dictionary]) – A list of single-length dictionaries whose
key is the name of the resulting variable, and whose value is the
expression to create it.



	Other Parameters

	
	name (str) – The name of this stage (handled automatically by fast-flow)


	out_dir (str) – Where to put the summary table (handled automatically by
fast-flow)








Example

variables:
  - Muon_pt: "sqrt(Muon_px**2 + Muon_py**2)"
  - Muon_is_good: (Muon_iso > 0.3) & (Muon_pt > 10)
  - NGoodMuons: {reduce: count_nonzero, formula: Muon_is_good}
  - First_Muon_pt: {reduce: 0, formula: Muon_pt}






See also


	fast_carpenter.define.reductions– for how reductions are handled and exactly what is valid.


	numexpr [https://numexpr.readthedocs.io/en/latest/]: which is used for
the internal expression handling.







	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/variables.py#L70-L75]

	








	
class fast_carpenter.SystematicWeights(name, out_dir, weights, out_format='weight_{}', extra_variations=[])[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/systematics.py#L9-L71]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Combines multiple weights and variations to produce a single event weight

To study the impact of systematic uncertainties it is common to re-weight events
using a variation of the weights representing, for example, a 1-sigma increase or decrease
in the weights.  Once there are multiple weight schemes involved writing out each possible combination
of these weights becomes tedious and potentially error-prone; this stage makes it easier.

It forms the nominal weight for each event by multiplying all nominal weights together,
then the specific variation by replacing a given nominal weight with its corresponding “up” or “down” variation.

Each variation of a weight should just be a string giving an expression to
use for that variation.  This stage then combines these into a single
expression by joining each set of variations with “*”, i.e. multiplying
them together.  The final results then use an internal Define
stage to do the calculation.


	Parameters

	
	weights (dictionary[str [https://docs.python.org/3/library/stdtypes.html#str], dictionary]) – A Dictionary of weight variations
to combine.  The keys in this dictionary will determine how this
variation is called in the output variable.  The values of this
dictionary should either be a single string – the name of the input
variable to use for the “nominal” variation, or a dictionary containing
any of the keys, nominal, up, or down.  Each of these should
then have a value providing the expression to use for that variation/


	out_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – The format string to use to build the name of the
output variations.  Defaults to “weight_{}”.  Should contain a pair
of empty braces which will be replaced with the name for the current
variation, e.g. “nominal” or “PileUp_up”.


	extra_variations (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of additional variations to allow






	Other Parameters

	
	name (str) – The name of this stage (handled automatically by fast-flow)


	out_dir (str) – Where to put the summary table (handled automatically by
fast-flow)








Example

syst_weights:
  energy_scale: {nominal: WeightEnergyScale, up: WeightEnergyScaleUp, down: WeightEnergyScaleDown}
  trigger: TriggerEfficiency
  recon: {nominal: ReconEfficiency, up: ReconEfficiency_up}





which will create 4 new variables:

weight_nominal =  WeightEnergyScale * TriggerEfficiency * ReconEfficiency
weight_energy_scale_up =  WeightEnergyScaleUp * TriggerEfficiency * ReconEfficiency
weight_energy_scale_down =  WeightEnergyScaleDown * TriggerEfficiency * ReconEfficiency
weight_recon_up =  WeightEnergyScale * TriggerEfficiency * ReconEfficiency_up






	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/systematics.py#L68-L71]

	








	
class fast_carpenter.CutFlow(name, out_dir, selection_file=None, keep_unique_id=False, selection=None, counter=True, weights=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L106-L225]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Prevents subsequent stages seeing certain events.

The two most important  parameters to understand are the selection and
weights parameters.


	Parameters

	
	selection (str [https://docs.python.org/3/library/stdtypes.html#str] or dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The criteria for selecting events, formed by a
nested set of “cuts”.  Each cut must either be a valid Expressions [https://docs.python.org/3/reference/expressions.html#expressions]
or a single-length dictionary, with one of Any or All as the key,
and a list of cuts as the value.


	weights (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – How to weight events in the
output summary table.  Must be either a single variable, a list of
variables, or a dictionary where the values are variables in the data and
keys are the column names that these weights should be called in the
output tables.








Example

Mask events using a single cut based on the nJet variable being
greater than 2 and weight events in the summary table by the
EventWeight variable:

cut_flow_1:
    selection:
        nJet > 2
    weights: EventWeight





Mask events by requiring both the nMuon variable being greater than 2
and the first Muon_energy value in each event being above 20.  Don’t weight
events in the summary table:

cut_flow_2:
    selection:
        All:
          - nMuon > 2
          - {reduce: 0, formula: Muon_energy > 20}





Mask events by requiring the nMuon variable be greater than 2 and
either the first Muon_energy value in each event is above 20 or the
total_energy is greater than 100.  The summary table will weight
events by both the EventWeight variable (called weight_nominal in the
table) and the SystUp variable (called weight_syst_up in the summary):

cut_flow_3:
    selection:
        All:
          - nMuon > 2
          - Any:
            - {reduce: 0, formula: Muon_energy > 20}
            - total_energy > 100
    weights: {weight_nominal: EventWeight, weight_syst_up: SystUp}






	Other Parameters

	
	name (str) – The name of this stage (handled automatically by fast-flow)


	out_dir (str) – Where to put the summary table (handled automatically by
fast-flow)


	selection_file (str) – Deprecated


	keep_unique_id (bool) – If True, the summary table will contain a
column that gives each cut a unique id.  This is used internally to
maintain the cut order, and often will not be useful in subsequent
manipulation of the output table, so by default this is removed.


	counter (bool) – Currently unused






	Raises

	BadCutflowConfig – If neither or both of selection and
selection_file are provided, or if a bad selection or
weight configuration is given.






See also

SelectPhaseSpace: Adds the resulting event-mask as a new
variable to the data.

selection.filters.build_selection(): Handles the actual creation of
the event selection, based on the configuration.

numexpr [https://numexpr.readthedocs.io/en/latest/]: which is used for
the internal expression handling.




	
collector()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L211-L217]

	




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L219-L222]

	




	
merge(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L224-L225]

	








	
class fast_carpenter.SelectPhaseSpace(name, out_dir, region_name, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L228-L250]

	Bases: fast_carpenter.selection.stage.CutFlow

Creates an event-mask and adds it to the data-space.

This is identical to the CutFlow class, except that the resulting
mask is added to the list of variables in the data-space, rather than being
used directly to remove events.  This allows multiple “regions” to be defined
using different CutFlows in a single configuration.


	Parameters

	region_name – The name given to the resulting mask when added to back to
the data-space.






See also

CutFlow: for a description of the other parameters.




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L247-L250]

	








	
class fast_carpenter.BinnedDataframe(name, out_dir, binning, weights=None, dataset_col=True, pad_missing=False, file_format=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L109-L219]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Produces a binned dataframe (a multi-dimensional histogram).

def __init__(self, name, out_dir, binning, weights=None, dataset_col=False):


	Parameters

	
	binning (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – A list of dictionaries describing the variables to
bin on, and how they should be binned.  Each of these dictionaries can
contain the following:








	Parameter

	Default

	Description





	in

	
	The name of the attribute on the event to use.



	out

	same as in

	The name of the column to be filled in the output dataframe.



	bins

	None

	
Must be either None or a dictionary.  If a dictionary,
it must contain one of the follow sets of

key-value pairs:


1. nbins, low, high: which are used to
produce a list of bin edges equivalent to:


numpy.linspace(low, high, nbins + 1)



2. edges: which is treated as the list of bin
edges directly.



If set to None, then the input variable is assumed
to already be categorical (ie. binned or discrete)












	weights (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – How to weight events in the
output table.  Must be either a single variable, a list of
variables, or a dictionary where the values are variables in the data and
keys are the column names that these weights should be called in the
output tables.


	file_format (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – determines the file format to
use to save the binned dataframe to disk.  Should be either a) a string with
the file format, b) a dict containing the keyword extension to give the file
format and then all other keyword-argument pairs are passed on to the
corresponding pandas function, or c) a list of values matching a) or b).


	dataset_col (bool [https://docs.python.org/3/library/functions.html#bool]) – adds an extra binning column with the name for each dataset.


	pad_missing (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, any bins that don’t contain data are
excluded from the stored dataframe.  Leaving this False can save
some disk-space and improve processing time, particularly if the bins are
only very sparsely filled.






	Other Parameters

	
	name (str) – The name of this stage (handled automatically by fast-flow)


	out_dir (str) – Where to put the summary table (handled automatically by
fast-flow)






	Raises

	BadBinnedDataframeConfig – If there is an issue with the binning description.






	
collector()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L178-L188]

	




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L190-L211]

	




	
merge(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L213-L219]

	








	
class fast_carpenter.BuildAghast(name, out_dir, binning, weights=None, dataset_col=True)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L87-L134]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Builds an aghast histogram.

Can be parametrized in the same way as
fast_carpenter.BinnedDataframe (and actually uses that stage
behind the scenes) but additionally writes out a Ghast which can be
reloaded with other ghast packages.


See also


	fast_carpenter.BinnedDataframe for a version which only
produces binned pandas dataframes.


	The aghast main page: https://github.com/scikit-hep/aghast.







	
collector()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L119-L128]

	




	
contents

	




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L130-L131]

	




	
merge(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L133-L134]

	








Subpackages



	fast_carpenter.backends package
	Submodules
	fast_carpenter.backends.alphatwirl module

	fast_carpenter.backends.coffea module









	fast_carpenter.define package
	Submodules
	fast_carpenter.define.reductions module

	fast_carpenter.define.systematics module

	fast_carpenter.define.variables module









	fast_carpenter.selection package
	Submodules
	fast_carpenter.selection.filters module

	fast_carpenter.selection.stage module









	fast_carpenter.summary package
	Submodules
	fast_carpenter.summary.aghast module

	fast_carpenter.summary.binned_dataframe module

	fast_carpenter.summary.binning_config module

	fast_carpenter.summary.event_level_dataframe module

	fast_carpenter.summary.import_aghast module
















Submodules



	fast_carpenter.event_builder module

	fast_carpenter.expressions module

	fast_carpenter.help module

	fast_carpenter.masked_tree module

	fast_carpenter.tree_wrapper module

	fast_carpenter.utils module

	fast_carpenter.version module











          

      

      

    

  

    
      
          
            
  
fast_carpenter.backends package

Provides a common interface to select a backend

Each backend is wrapped in a function so that it is only imported if requested


	
fast_carpenter.backends.get_alphatwirl()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/backends/__init__.py#L8-L10]

	




	
fast_carpenter.backends.get_backend(name)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/backends/__init__.py#L28-L31]

	




	
fast_carpenter.backends.get_coffea()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/backends/__init__.py#L13-L15]

	




Submodules



	fast_carpenter.backends.alphatwirl module

	fast_carpenter.backends.coffea module











          

      

      

    

  

    
      
          
            
  
fast_carpenter.backends.alphatwirl module

Functions to run a job using alphatwirl


	
class fast_carpenter.backends.alphatwirl.AtuprootContext[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/backends/alphatwirl.py#L11-L26]

	Bases: object [https://docs.python.org/3/library/functions.html#object]






	
class fast_carpenter.backends.alphatwirl.DummyCollector[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/backends/alphatwirl.py#L6-L8]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
collect(*args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/backends/alphatwirl.py#L7-L8]

	








	
fast_carpenter.backends.alphatwirl.execute(sequence, datasets, args)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/backends/alphatwirl.py#L29-L59]

	Run a job using alphatwirl and atuproot









          

      

      

    

  

    
      
          
            
  
fast_carpenter.backends.coffea module





          

      

      

    

  

    
      
          
            
  
fast_carpenter.define package


	
class fast_carpenter.define.Define(name, out_dir, variables)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/variables.py#L15-L75]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Creates new variables using a string-based expression.

There are two types of expressions:



	Simple formulae, and


	Reducing formulae.







The essential difference, unfortunately, is an internal one: simple
expressions are nearly directly handled by numexpr [https://numexpr.readthedocs.io/en/latest/], whereas reducing expressions
add a layer on top.

From a users perspective, however, simple expressions are those that
preserve the dimensionality of the input.  If one of the input variables
represents a list of values for each event  (whose length might vary), then
the output will contain an equal-length list of values for each event.

If, however, a reducing expression is used, then there will be one less
dimension on the resulting variable.  In this case, if an input variable
has a list of values for each event, the result of the expression will only
contain a single value per event.


	Parameters

	variables (list [https://docs.python.org/3/library/stdtypes.html#list][dictionary]) – A list of single-length dictionaries whose
key is the name of the resulting variable, and whose value is the
expression to create it.



	Other Parameters

	
	name (str) – The name of this stage (handled automatically by fast-flow)


	out_dir (str) – Where to put the summary table (handled automatically by
fast-flow)








Example

variables:
  - Muon_pt: "sqrt(Muon_px**2 + Muon_py**2)"
  - Muon_is_good: (Muon_iso > 0.3) & (Muon_pt > 10)
  - NGoodMuons: {reduce: count_nonzero, formula: Muon_is_good}
  - First_Muon_pt: {reduce: 0, formula: Muon_pt}






See also


	fast_carpenter.define.reductions– for how reductions are handled and exactly what is valid.


	numexpr [https://numexpr.readthedocs.io/en/latest/]: which is used for
the internal expression handling.







	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/variables.py#L70-L75]

	








	
class fast_carpenter.define.SystematicWeights(name, out_dir, weights, out_format='weight_{}', extra_variations=[])[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/systematics.py#L9-L71]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Combines multiple weights and variations to produce a single event weight

To study the impact of systematic uncertainties it is common to re-weight events
using a variation of the weights representing, for example, a 1-sigma increase or decrease
in the weights.  Once there are multiple weight schemes involved writing out each possible combination
of these weights becomes tedious and potentially error-prone; this stage makes it easier.

It forms the nominal weight for each event by multiplying all nominal weights together,
then the specific variation by replacing a given nominal weight with its corresponding “up” or “down” variation.

Each variation of a weight should just be a string giving an expression to
use for that variation.  This stage then combines these into a single
expression by joining each set of variations with “*”, i.e. multiplying
them together.  The final results then use an internal Define
stage to do the calculation.


	Parameters

	
	weights (dictionary[str [https://docs.python.org/3/library/stdtypes.html#str], dictionary]) – A Dictionary of weight variations
to combine.  The keys in this dictionary will determine how this
variation is called in the output variable.  The values of this
dictionary should either be a single string – the name of the input
variable to use for the “nominal” variation, or a dictionary containing
any of the keys, nominal, up, or down.  Each of these should
then have a value providing the expression to use for that variation/


	out_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – The format string to use to build the name of the
output variations.  Defaults to “weight_{}”.  Should contain a pair
of empty braces which will be replaced with the name for the current
variation, e.g. “nominal” or “PileUp_up”.


	extra_variations (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of additional variations to allow






	Other Parameters

	
	name (str) – The name of this stage (handled automatically by fast-flow)


	out_dir (str) – Where to put the summary table (handled automatically by
fast-flow)








Example

syst_weights:
  energy_scale: {nominal: WeightEnergyScale, up: WeightEnergyScaleUp, down: WeightEnergyScaleDown}
  trigger: TriggerEfficiency
  recon: {nominal: ReconEfficiency, up: ReconEfficiency_up}





which will create 4 new variables:

weight_nominal =  WeightEnergyScale * TriggerEfficiency * ReconEfficiency
weight_energy_scale_up =  WeightEnergyScaleUp * TriggerEfficiency * ReconEfficiency
weight_energy_scale_down =  WeightEnergyScaleDown * TriggerEfficiency * ReconEfficiency
weight_recon_up =  WeightEnergyScale * TriggerEfficiency * ReconEfficiency_up






	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/systematics.py#L68-L71]

	








Submodules



	fast_carpenter.define.reductions module

	fast_carpenter.define.systematics module

	fast_carpenter.define.variables module











          

      

      

    

  

    
      
          
            
  
fast_carpenter.define.reductions module


	
fast_carpenter.define.reductions.get_pandas_reduction(stage_name, reduction)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/reductions.py#L105-L124]

	







          

      

      

    

  

    
      
          
            
  
fast_carpenter.define.systematics module


	
exception fast_carpenter.define.systematics.BadSystematicWeightsConfig[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/systematics.py#L5-L6]

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]






	
class fast_carpenter.define.systematics.SystematicWeights(name, out_dir, weights, out_format='weight_{}', extra_variations=[])[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/systematics.py#L9-L71]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Combines multiple weights and variations to produce a single event weight

To study the impact of systematic uncertainties it is common to re-weight events
using a variation of the weights representing, for example, a 1-sigma increase or decrease
in the weights.  Once there are multiple weight schemes involved writing out each possible combination
of these weights becomes tedious and potentially error-prone; this stage makes it easier.

It forms the nominal weight for each event by multiplying all nominal weights together,
then the specific variation by replacing a given nominal weight with its corresponding “up” or “down” variation.

Each variation of a weight should just be a string giving an expression to
use for that variation.  This stage then combines these into a single
expression by joining each set of variations with “*”, i.e. multiplying
them together.  The final results then use an internal Define
stage to do the calculation.


	Parameters

	
	weights (dictionary[str [https://docs.python.org/3/library/stdtypes.html#str], dictionary]) – A Dictionary of weight variations
to combine.  The keys in this dictionary will determine how this
variation is called in the output variable.  The values of this
dictionary should either be a single string – the name of the input
variable to use for the “nominal” variation, or a dictionary containing
any of the keys, nominal, up, or down.  Each of these should
then have a value providing the expression to use for that variation/


	out_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – The format string to use to build the name of the
output variations.  Defaults to “weight_{}”.  Should contain a pair
of empty braces which will be replaced with the name for the current
variation, e.g. “nominal” or “PileUp_up”.


	extra_variations (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of additional variations to allow






	Other Parameters

	
	name (str) – The name of this stage (handled automatically by fast-flow)


	out_dir (str) – Where to put the summary table (handled automatically by
fast-flow)








Example

syst_weights:
  energy_scale: {nominal: WeightEnergyScale, up: WeightEnergyScaleUp, down: WeightEnergyScaleDown}
  trigger: TriggerEfficiency
  recon: {nominal: ReconEfficiency, up: ReconEfficiency_up}





which will create 4 new variables:

weight_nominal =  WeightEnergyScale * TriggerEfficiency * ReconEfficiency
weight_energy_scale_up =  WeightEnergyScaleUp * TriggerEfficiency * ReconEfficiency
weight_energy_scale_down =  WeightEnergyScaleDown * TriggerEfficiency * ReconEfficiency
weight_recon_up =  WeightEnergyScale * TriggerEfficiency * ReconEfficiency_up






	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/systematics.py#L68-L71]

	











          

      

      

    

  

    
      
          
            
  
fast_carpenter.define.variables module


	
exception fast_carpenter.define.variables.BadVariablesConfig[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/variables.py#L11-L12]

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]






	
class fast_carpenter.define.variables.CalculationCfg(name, expression, reduction, fill_missing, mask)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/variables.py]

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]


	
expression

	Alias for field number 1






	
fill_missing

	Alias for field number 3






	
mask

	Alias for field number 4






	
name

	Alias for field number 0






	
reduction

	Alias for field number 2










	
class fast_carpenter.define.variables.Define(name, out_dir, variables)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/variables.py#L15-L75]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Creates new variables using a string-based expression.

There are two types of expressions:



	Simple formulae, and


	Reducing formulae.







The essential difference, unfortunately, is an internal one: simple
expressions are nearly directly handled by numexpr [https://numexpr.readthedocs.io/en/latest/], whereas reducing expressions
add a layer on top.

From a users perspective, however, simple expressions are those that
preserve the dimensionality of the input.  If one of the input variables
represents a list of values for each event  (whose length might vary), then
the output will contain an equal-length list of values for each event.

If, however, a reducing expression is used, then there will be one less
dimension on the resulting variable.  In this case, if an input variable
has a list of values for each event, the result of the expression will only
contain a single value per event.


	Parameters

	variables (list [https://docs.python.org/3/library/stdtypes.html#list][dictionary]) – A list of single-length dictionaries whose
key is the name of the resulting variable, and whose value is the
expression to create it.



	Other Parameters

	
	name (str) – The name of this stage (handled automatically by fast-flow)


	out_dir (str) – Where to put the summary table (handled automatically by
fast-flow)








Example

variables:
  - Muon_pt: "sqrt(Muon_px**2 + Muon_py**2)"
  - Muon_is_good: (Muon_iso > 0.3) & (Muon_pt > 10)
  - NGoodMuons: {reduce: count_nonzero, formula: Muon_is_good}
  - First_Muon_pt: {reduce: 0, formula: Muon_pt}






See also


	fast_carpenter.define.reductions– for how reductions are handled and exactly what is valid.


	numexpr [https://numexpr.readthedocs.io/en/latest/]: which is used for
the internal expression handling.







	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/variables.py#L70-L75]

	








	
class fast_carpenter.define.variables.DefinePandas(name, out_dir, variables)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/variables.py#L78-L100]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/variables.py#L85-L100]

	








	
fast_carpenter.define.variables.full_evaluate(tree, expression, fill_missing, mask=None, reduction=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/variables.py#L142-L149]

	







          

      

      

    

  

    
      
          
            
  
fast_carpenter.selection package


	
class fast_carpenter.selection.CutFlow(name, out_dir, selection_file=None, keep_unique_id=False, selection=None, counter=True, weights=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L106-L225]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Prevents subsequent stages seeing certain events.

The two most important  parameters to understand are the selection and
weights parameters.


	Parameters

	
	selection (str [https://docs.python.org/3/library/stdtypes.html#str] or dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The criteria for selecting events, formed by a
nested set of “cuts”.  Each cut must either be a valid Expressions [https://docs.python.org/3/reference/expressions.html#expressions]
or a single-length dictionary, with one of Any or All as the key,
and a list of cuts as the value.


	weights (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – How to weight events in the
output summary table.  Must be either a single variable, a list of
variables, or a dictionary where the values are variables in the data and
keys are the column names that these weights should be called in the
output tables.








Example

Mask events using a single cut based on the nJet variable being
greater than 2 and weight events in the summary table by the
EventWeight variable:

cut_flow_1:
    selection:
        nJet > 2
    weights: EventWeight





Mask events by requiring both the nMuon variable being greater than 2
and the first Muon_energy value in each event being above 20.  Don’t weight
events in the summary table:

cut_flow_2:
    selection:
        All:
          - nMuon > 2
          - {reduce: 0, formula: Muon_energy > 20}





Mask events by requiring the nMuon variable be greater than 2 and
either the first Muon_energy value in each event is above 20 or the
total_energy is greater than 100.  The summary table will weight
events by both the EventWeight variable (called weight_nominal in the
table) and the SystUp variable (called weight_syst_up in the summary):

cut_flow_3:
    selection:
        All:
          - nMuon > 2
          - Any:
            - {reduce: 0, formula: Muon_energy > 20}
            - total_energy > 100
    weights: {weight_nominal: EventWeight, weight_syst_up: SystUp}






	Other Parameters

	
	name (str) – The name of this stage (handled automatically by fast-flow)


	out_dir (str) – Where to put the summary table (handled automatically by
fast-flow)


	selection_file (str) – Deprecated


	keep_unique_id (bool) – If True, the summary table will contain a
column that gives each cut a unique id.  This is used internally to
maintain the cut order, and often will not be useful in subsequent
manipulation of the output table, so by default this is removed.


	counter (bool) – Currently unused






	Raises

	BadCutflowConfig – If neither or both of selection and
selection_file are provided, or if a bad selection or
weight configuration is given.






See also

SelectPhaseSpace: Adds the resulting event-mask as a new
variable to the data.

selection.filters.build_selection(): Handles the actual creation of
the event selection, based on the configuration.

numexpr [https://numexpr.readthedocs.io/en/latest/]: which is used for
the internal expression handling.




	
collector()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L211-L217]

	




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L219-L222]

	




	
merge(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L224-L225]

	








	
class fast_carpenter.selection.SelectPhaseSpace(name, out_dir, region_name, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L228-L250]

	Bases: fast_carpenter.selection.stage.CutFlow

Creates an event-mask and adds it to the data-space.

This is identical to the CutFlow class, except that the resulting
mask is added to the list of variables in the data-space, rather than being
used directly to remove events.  This allows multiple “regions” to be defined
using different CutFlows in a single configuration.


	Parameters

	region_name – The name given to the resulting mask when added to back to
the data-space.






See also

CutFlow: for a description of the other parameters.




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L247-L250]

	








Submodules



	fast_carpenter.selection.filters module

	fast_carpenter.selection.stage module











          

      

      

    

  

    
      
          
            
  
fast_carpenter.selection.filters module


	
class fast_carpenter.selection.filters.All(selection, depth, cut_id, weights)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L159-L174]

	Bases: fast_carpenter.selection.filters.BaseFilter






	
class fast_carpenter.selection.filters.Any(selection, depth, cut_id, weights)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L177-L193]

	Bases: fast_carpenter.selection.filters.BaseFilter






	
class fast_carpenter.selection.filters.BaseFilter(selection, depth, cut_id, weights)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L69-L129]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
columns

	




	
increment_counters(data, is_mc, excl, before, after)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L119-L122]

	




	
index_values

	




	
merge(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L110-L117]

	




	
to_dataframe()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L104-L108]

	




	
values

	








	
class fast_carpenter.selection.filters.Counter(weights)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L24-L66]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
add(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L64-L66]

	




	
counts

	




	
static get_unweighted_increment(data, mask)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L30-L37]

	




	
static get_weighted_increment(weight_names, data, mask)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L39-L44]

	




	
increment(data, is_mc, mask=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L46-L58]

	








	
class fast_carpenter.selection.filters.OuterCounterIncrementer(*args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L196-L209]

	Bases: fast_carpenter.selection.filters.BaseFilter






	
class fast_carpenter.selection.filters.ReduceSingleCut(stage_name, depth, cut_id, weights, selection)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L132-L147]

	Bases: fast_carpenter.selection.filters.BaseFilter






	
class fast_carpenter.selection.filters.SingleCut(selection, depth, cut_id, weights)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L150-L156]

	Bases: fast_carpenter.selection.filters.BaseFilter






	
fast_carpenter.selection.filters.build_selection(stage_name, config, weights=[])[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L212-L225]

	Creates event selectors based on the configuration.


	Parameters

	
	stage_name – Used to help in error messages.


	config – The event selection configuration.


	weights – How to weight events, used to produce the resulting cut
efficiency table.






	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if any of the configurations are invalid.










	
fast_carpenter.selection.filters.handle_config(stage_name, config, weights, depth=0, cut_id=[0])[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L228-L249]

	




	
fast_carpenter.selection.filters.safe_and(left, right)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L8-L13]

	




	
fast_carpenter.selection.filters.safe_or(left, right)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L16-L21]

	







          

      

      

    

  

    
      
          
            
  
fast_carpenter.selection.stage module

Stages to remove events from subsequent stages

Provides two stages:



	CutFlow – Prevent subsequent stages from seeing certain events,


	SelectPhaseSpace – Create a new variable which can be used as a mask







Both stages are configured very similarly, and both stages produce an output
table describing how many events pass each subsequent cut to make it into the
final mask.


	
class fast_carpenter.selection.stage.CutFlow(name, out_dir, selection_file=None, keep_unique_id=False, selection=None, counter=True, weights=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L106-L225]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Prevents subsequent stages seeing certain events.

The two most important  parameters to understand are the selection and
weights parameters.


	Parameters

	
	selection (str [https://docs.python.org/3/library/stdtypes.html#str] or dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The criteria for selecting events, formed by a
nested set of “cuts”.  Each cut must either be a valid Expressions [https://docs.python.org/3/reference/expressions.html#expressions]
or a single-length dictionary, with one of Any or All as the key,
and a list of cuts as the value.


	weights (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – How to weight events in the
output summary table.  Must be either a single variable, a list of
variables, or a dictionary where the values are variables in the data and
keys are the column names that these weights should be called in the
output tables.








Example

Mask events using a single cut based on the nJet variable being
greater than 2 and weight events in the summary table by the
EventWeight variable:

cut_flow_1:
    selection:
        nJet > 2
    weights: EventWeight





Mask events by requiring both the nMuon variable being greater than 2
and the first Muon_energy value in each event being above 20.  Don’t weight
events in the summary table:

cut_flow_2:
    selection:
        All:
          - nMuon > 2
          - {reduce: 0, formula: Muon_energy > 20}





Mask events by requiring the nMuon variable be greater than 2 and
either the first Muon_energy value in each event is above 20 or the
total_energy is greater than 100.  The summary table will weight
events by both the EventWeight variable (called weight_nominal in the
table) and the SystUp variable (called weight_syst_up in the summary):

cut_flow_3:
    selection:
        All:
          - nMuon > 2
          - Any:
            - {reduce: 0, formula: Muon_energy > 20}
            - total_energy > 100
    weights: {weight_nominal: EventWeight, weight_syst_up: SystUp}






	Other Parameters

	
	name (str) – The name of this stage (handled automatically by fast-flow)


	out_dir (str) – Where to put the summary table (handled automatically by
fast-flow)


	selection_file (str) – Deprecated


	keep_unique_id (bool) – If True, the summary table will contain a
column that gives each cut a unique id.  This is used internally to
maintain the cut order, and often will not be useful in subsequent
manipulation of the output table, so by default this is removed.


	counter (bool) – Currently unused






	Raises

	BadCutflowConfig – If neither or both of selection and
selection_file are provided, or if a bad selection or
weight configuration is given.






See also

SelectPhaseSpace: Adds the resulting event-mask as a new
variable to the data.

selection.filters.build_selection(): Handles the actual creation of
the event selection, based on the configuration.

numexpr [https://numexpr.readthedocs.io/en/latest/]: which is used for
the internal expression handling.




	
collector()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L211-L217]

	




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L219-L222]

	




	
merge(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L224-L225]

	








	
class fast_carpenter.selection.stage.SelectPhaseSpace(name, out_dir, region_name, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L228-L250]

	Bases: fast_carpenter.selection.stage.CutFlow

Creates an event-mask and adds it to the data-space.

This is identical to the CutFlow class, except that the resulting
mask is added to the list of variables in the data-space, rather than being
used directly to remove events.  This allows multiple “regions” to be defined
using different CutFlows in a single configuration.


	Parameters

	region_name – The name given to the resulting mask when added to back to
the data-space.






See also

CutFlow: for a description of the other parameters.




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L247-L250]

	











          

      

      

    

  

    
      
          
            
  
fast_carpenter.summary package


	
class fast_carpenter.summary.BuildAghast(name, out_dir, binning, weights=None, dataset_col=True)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L87-L134]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Builds an aghast histogram.

Can be parametrized in the same way as
fast_carpenter.BinnedDataframe (and actually uses that stage
behind the scenes) but additionally writes out a Ghast which can be
reloaded with other ghast packages.


See also


	fast_carpenter.BinnedDataframe for a version which only
produces binned pandas dataframes.


	The aghast main page: https://github.com/scikit-hep/aghast.







	
collector()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L119-L128]

	




	
contents

	




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L130-L131]

	




	
merge(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L133-L134]

	








	
class fast_carpenter.summary.BinnedDataframe(name, out_dir, binning, weights=None, dataset_col=True, pad_missing=False, file_format=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L109-L219]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Produces a binned dataframe (a multi-dimensional histogram).

def __init__(self, name, out_dir, binning, weights=None, dataset_col=False):


	Parameters

	
	binning (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – A list of dictionaries describing the variables to
bin on, and how they should be binned.  Each of these dictionaries can
contain the following:








	Parameter

	Default

	Description





	in

	
	The name of the attribute on the event to use.



	out

	same as in

	The name of the column to be filled in the output dataframe.



	bins

	None

	
Must be either None or a dictionary.  If a dictionary,
it must contain one of the follow sets of

key-value pairs:


1. nbins, low, high: which are used to
produce a list of bin edges equivalent to:


numpy.linspace(low, high, nbins + 1)



2. edges: which is treated as the list of bin
edges directly.



If set to None, then the input variable is assumed
to already be categorical (ie. binned or discrete)












	weights (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – How to weight events in the
output table.  Must be either a single variable, a list of
variables, or a dictionary where the values are variables in the data and
keys are the column names that these weights should be called in the
output tables.


	file_format (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – determines the file format to
use to save the binned dataframe to disk.  Should be either a) a string with
the file format, b) a dict containing the keyword extension to give the file
format and then all other keyword-argument pairs are passed on to the
corresponding pandas function, or c) a list of values matching a) or b).


	dataset_col (bool [https://docs.python.org/3/library/functions.html#bool]) – adds an extra binning column with the name for each dataset.


	pad_missing (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, any bins that don’t contain data are
excluded from the stored dataframe.  Leaving this False can save
some disk-space and improve processing time, particularly if the bins are
only very sparsely filled.






	Other Parameters

	
	name (str) – The name of this stage (handled automatically by fast-flow)


	out_dir (str) – Where to put the summary table (handled automatically by
fast-flow)






	Raises

	BadBinnedDataframeConfig – If there is an issue with the binning description.






	
collector()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L178-L188]

	




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L190-L211]

	




	
merge(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L213-L219]

	








	
class fast_carpenter.summary.EventByEventDataframe(name, out_dir, collections, mask=None, flatten=True)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/event_level_dataframe.py#L45-L86]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Write out a pandas dataframe with event-level values


	
collector()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/event_level_dataframe.py#L74-L78]

	




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/event_level_dataframe.py#L60-L72]

	




	
merge(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/event_level_dataframe.py#L80-L86]

	








Submodules



	fast_carpenter.summary.aghast module

	fast_carpenter.summary.binned_dataframe module

	fast_carpenter.summary.binning_config module

	fast_carpenter.summary.event_level_dataframe module

	fast_carpenter.summary.import_aghast module











          

      

      

    

  

    
      
          
            
  
fast_carpenter.summary.aghast module


	
class fast_carpenter.summary.aghast.BuildAghast(name, out_dir, binning, weights=None, dataset_col=True)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L87-L134]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Builds an aghast histogram.

Can be parametrized in the same way as
fast_carpenter.BinnedDataframe (and actually uses that stage
behind the scenes) but additionally writes out a Ghast which can be
reloaded with other ghast packages.


See also


	fast_carpenter.BinnedDataframe for a version which only
produces binned pandas dataframes.


	The aghast main page: https://github.com/scikit-hep/aghast.







	
collector()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L119-L128]

	




	
contents

	




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L130-L131]

	




	
merge(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L133-L134]

	








	
class fast_carpenter.summary.aghast.Collector(filename, axes, edges, by_dataset)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L10-L29]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
collect(dataset_readers_list)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L17-L29]

	








	
fast_carpenter.summary.aghast.bin_one_dimension(low=None, high=None, nbins=None, edges=None, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L70-L84]

	




	
fast_carpenter.summary.aghast.complete_axes(axes, df_index)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L53-L62]

	




	
fast_carpenter.summary.aghast.convert_to_counters(df)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L32-L50]

	







          

      

      

    

  

    
      
          
            
  
fast_carpenter.summary.binned_dataframe module

Summarize the data by producing binned and possibly weighted counts of the data.


	
class fast_carpenter.summary.binned_dataframe.BinnedDataframe(name, out_dir, binning, weights=None, dataset_col=True, pad_missing=False, file_format=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L109-L219]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Produces a binned dataframe (a multi-dimensional histogram).

def __init__(self, name, out_dir, binning, weights=None, dataset_col=False):


	Parameters

	
	binning (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – A list of dictionaries describing the variables to
bin on, and how they should be binned.  Each of these dictionaries can
contain the following:








	Parameter

	Default

	Description





	in

	
	The name of the attribute on the event to use.



	out

	same as in

	The name of the column to be filled in the output dataframe.



	bins

	None

	
Must be either None or a dictionary.  If a dictionary,
it must contain one of the follow sets of

key-value pairs:


1. nbins, low, high: which are used to
produce a list of bin edges equivalent to:


numpy.linspace(low, high, nbins + 1)



2. edges: which is treated as the list of bin
edges directly.



If set to None, then the input variable is assumed
to already be categorical (ie. binned or discrete)












	weights (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – How to weight events in the
output table.  Must be either a single variable, a list of
variables, or a dictionary where the values are variables in the data and
keys are the column names that these weights should be called in the
output tables.


	file_format (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – determines the file format to
use to save the binned dataframe to disk.  Should be either a) a string with
the file format, b) a dict containing the keyword extension to give the file
format and then all other keyword-argument pairs are passed on to the
corresponding pandas function, or c) a list of values matching a) or b).


	dataset_col (bool [https://docs.python.org/3/library/functions.html#bool]) – adds an extra binning column with the name for each dataset.


	pad_missing (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, any bins that don’t contain data are
excluded from the stored dataframe.  Leaving this False can save
some disk-space and improve processing time, particularly if the bins are
only very sparsely filled.






	Other Parameters

	
	name (str) – The name of this stage (handled automatically by fast-flow)


	out_dir (str) – Where to put the summary table (handled automatically by
fast-flow)






	Raises

	BadBinnedDataframeConfig – If there is an issue with the binning description.






	
collector()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L178-L188]

	




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L190-L211]

	




	
merge(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L213-L219]

	








	
class fast_carpenter.summary.binned_dataframe.Collector(filename, dataset_col, binnings, file_format)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L12-L49]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
collect(dataset_readers_list, doReturn=True, writeFiles=True)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L21-L44]

	




	
valid_ext = {'dta': 'stata', 'h5': 'hdf', 'msg': 'msgpack', 'p': 'pickle', 'pkl': 'pickle', 'xlsx': 'excel'}

	








	
fast_carpenter.summary.binned_dataframe.combined_dataframes(dataset_readers_list, dataset_col, binnings=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L52-L64]

	




	
fast_carpenter.summary.binned_dataframe.densify_dataframe(in_df, binnings)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L95-L106]

	




	
fast_carpenter.summary.binned_dataframe.explode(df)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L268-L298]

	Based on this answer:
https://stackoverflow.com/questions/12680754/split-explode-pandas    -dataframe-string-entry-to-separate-rows/40449726#40449726









          

      

      

    

  

    
      
          
            
  
fast_carpenter.summary.binning_config module


	
exception fast_carpenter.summary.binning_config.BadBinnedDataframeConfig[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binning_config.py#L6-L7]

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]






	
fast_carpenter.summary.binning_config.bin_one_dimension(low=None, high=None, nbins=None, edges=None, overflow=True, underflow=True)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binning_config.py#L63-L81]

	




	
fast_carpenter.summary.binning_config.create_binning_list(name, bin_list, make_bins=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binning_config.py#L10-L31]

	




	
fast_carpenter.summary.binning_config.create_file_format(stage_name, file_format)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binning_config.py#L97-L110]

	




	
fast_carpenter.summary.binning_config.create_one_dimension(stage_name, _in, _out=None, _bins=None, _index=None, make_bins=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binning_config.py#L34-L60]

	




	
fast_carpenter.summary.binning_config.create_weights(stage_name, weights)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binning_config.py#L84-L94]

	







          

      

      

    

  

    
      
          
            
  
fast_carpenter.summary.event_level_dataframe module


	
class fast_carpenter.summary.event_level_dataframe.Collector(filename)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/event_level_dataframe.py#L5-L42]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
collect(dataset_readers_list)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/event_level_dataframe.py#L9-L15]

	








	
class fast_carpenter.summary.event_level_dataframe.EventByEventDataframe(name, out_dir, collections, mask=None, flatten=True)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/event_level_dataframe.py#L45-L86]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Write out a pandas dataframe with event-level values


	
collector()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/event_level_dataframe.py#L74-L78]

	




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/event_level_dataframe.py#L60-L72]

	




	
merge(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/event_level_dataframe.py#L80-L86]

	











          

      

      

    

  

    
      
          
            
  
fast_carpenter.summary.import_aghast module


	
class fast_carpenter.summary.import_aghast.AghastCatcher[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/import_aghast.py#L8-L13]

	Bases: object [https://docs.python.org/3/library/functions.html#object]









          

      

      

    

  

    
      
          
            
  
fast_carpenter.event_builder module


	
class fast_carpenter.event_builder.BEventsWrapped(tree, *args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/event_builder.py#L30-L50]

	Bases: atuproot.BEvents.BEvents






	
class fast_carpenter.event_builder.EventBuilder(config)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/event_builder.py#L53-L84]

	Bases: object [https://docs.python.org/3/library/functions.html#object]






	
class fast_carpenter.event_builder.EventRanger[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/event_builder.py#L6-L27]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
entries_in_block

	




	
set_owner(owner)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/event_builder.py#L10-L11]

	




	
start_entry

	




	
stop_entry

	











          

      

      

    

  

    
      
          
            
  
fast_carpenter.expressions module


	
fast_carpenter.expressions.get_branches(cut, valid)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/expressions.py#L22-L39]

	




	
fast_carpenter.expressions.evaluate(tree, expression)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/expressions.py#L112-L117]

	







          

      

      

    

  

    
      
          
            
  
fast_carpenter.help module


	
class fast_carpenter.help.StageGuidanceHelper(stage_class, module_name)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/help.py#L7-L48]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
class_name

	




	
docstring(nlines=-1)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/help.py#L32-L48]

	




	
matches(regex)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/help.py#L22-L25]

	




	
parameters()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/help.py#L27-L30]

	




	
stage

	








	
fast_carpenter.help.format_signature(args, vargs, kwargs, defaults, annots)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/help.py#L57-L68]

	




	
fast_carpenter.help.get_signature(function)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/help.py#L51-L54]

	




	
fast_carpenter.help.help_stages(stage_name, full_output=False)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/help.py#L74-L92]

	







          

      

      

    

  

    
      
          
            
  
fast_carpenter.masked_tree module


	
class fast_carpenter.masked_tree.MaskedUprootTree(tree, event_ranger, mask=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/masked_tree.py#L6-L93]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
class PandasWrap(owner)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/masked_tree.py#L22-L31]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
df(*args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/masked_tree.py#L26-L31]

	








	
apply_mask(new_mask)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/masked_tree.py#L75-L79]

	




	
array(*args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/masked_tree.py#L43-L47]

	




	
arrays(*args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/masked_tree.py#L49-L69]

	




	
mask

	




	
pandas

	




	
reset_mask()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/masked_tree.py#L92-L93]

	




	
unmasked_array(*args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/masked_tree.py#L37-L38]

	




	
unmasked_arrays(*args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/masked_tree.py#L40-L41]

	








	
fast_carpenter.masked_tree.mask_df(df, mask, start_event)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/masked_tree.py#L110-L120]

	







          

      

      

    

  

    
      
          
            
  
fast_carpenter.tree_wrapper module

This has to be what is probably the hackiest piece of code I’ve ever written.
It’s very tightly coupled to uproot, and just by importing it will change the
way uproot works.  However, it allows me to achieve the functionality of adding
a branch to uproot trees with no changes to actual code in uproot and with
minimal coding on my side…


	
class fast_carpenter.tree_wrapper.WrappedTree(tree, event_ranger)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L45-L153]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
class FakeBranch(name, values, event_ranger)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L90-L121]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
array(entrystart=None, entrystop=None, blocking=True, **kws)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L102-L115]

	








	
class PandasWrap(owner)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L77-L84]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
df(*args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L81-L84]

	








	
array(*args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L68-L70]

	




	
arrays(*args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L64-L66]

	




	
itervalues(*args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L58-L62]

	




	
new_variable(name, value)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L123-L134]

	




	
pandas

	




	
reset_cache()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L148-L153]

	




	
update_array_args(kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L72-L75]

	








	
fast_carpenter.tree_wrapper.recursive_type_wrap(array)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L14-L17]

	




	
class fast_carpenter.tree_wrapper.wrapped_asgenobj(cls, context, skipbytes)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L20-L24]

	Bases: uproot.interp.objects.asgenobj


	
finalize(*args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L21-L24]

	








	
fast_carpenter.tree_wrapper.wrapped_interpret(branch, *args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L30-L39]

	







          

      

      

    

  

    
      
          
            
  
fast_carpenter.utils module


	
fast_carpenter.utils.mkdir_p(path)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/utils.py#L17-L18]

	







          

      

      

    

  

    
      
          
            
  
fast_carpenter.version module

Defines version of codebase


	
fast_carpenter.version.split_version(version)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/version.py#L5-L12]

	Split a semantic version string into a version_info tuple









          

      

      

    

  

    
      
          
            
  
fast_carpenter.backends package

Provides a common interface to select a backend

Each backend is wrapped in a function so that it is only imported if requested


	
fast_carpenter.backends.get_alphatwirl()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/backends/__init__.py#L8-L10]

	




	
fast_carpenter.backends.get_backend(name)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/backends/__init__.py#L28-L31]

	




	
fast_carpenter.backends.get_coffea()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/backends/__init__.py#L13-L15]

	




Submodules



	fast_carpenter.backends.alphatwirl module

	fast_carpenter.backends.coffea module











          

      

      

    

  

    
      
          
            
  
fast_carpenter.backends.alphatwirl module

Functions to run a job using alphatwirl


	
class fast_carpenter.backends.alphatwirl.AtuprootContext[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/backends/alphatwirl.py#L11-L26]

	Bases: object [https://docs.python.org/3/library/functions.html#object]






	
class fast_carpenter.backends.alphatwirl.DummyCollector[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/backends/alphatwirl.py#L6-L8]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
collect(*args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/backends/alphatwirl.py#L7-L8]

	








	
fast_carpenter.backends.alphatwirl.execute(sequence, datasets, args)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/backends/alphatwirl.py#L29-L59]

	Run a job using alphatwirl and atuproot









          

      

      

    

  

    
      
          
            
  
fast_carpenter.backends.coffea module





          

      

      

    

  

    
      
          
            
  
fast_carpenter.backends.alphatwirl module

Functions to run a job using alphatwirl


	
class fast_carpenter.backends.alphatwirl.AtuprootContext[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/backends/alphatwirl.py#L11-L26]

	Bases: object [https://docs.python.org/3/library/functions.html#object]






	
class fast_carpenter.backends.alphatwirl.DummyCollector[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/backends/alphatwirl.py#L6-L8]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
collect(*args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/backends/alphatwirl.py#L7-L8]

	








	
fast_carpenter.backends.alphatwirl.execute(sequence, datasets, args)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/backends/alphatwirl.py#L29-L59]

	Run a job using alphatwirl and atuproot









          

      

      

    

  

    
      
          
            
  
fast_carpenter.backends.coffea module





          

      

      

    

  

    
      
          
            
  
fast_carpenter.define package


	
class fast_carpenter.define.Define(name, out_dir, variables)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/variables.py#L15-L75]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Creates new variables using a string-based expression.

There are two types of expressions:



	Simple formulae, and


	Reducing formulae.







The essential difference, unfortunately, is an internal one: simple
expressions are nearly directly handled by numexpr [https://numexpr.readthedocs.io/en/latest/], whereas reducing expressions
add a layer on top.

From a users perspective, however, simple expressions are those that
preserve the dimensionality of the input.  If one of the input variables
represents a list of values for each event  (whose length might vary), then
the output will contain an equal-length list of values for each event.

If, however, a reducing expression is used, then there will be one less
dimension on the resulting variable.  In this case, if an input variable
has a list of values for each event, the result of the expression will only
contain a single value per event.


	Parameters

	variables (list [https://docs.python.org/3/library/stdtypes.html#list][dictionary]) – A list of single-length dictionaries whose
key is the name of the resulting variable, and whose value is the
expression to create it.



	Other Parameters

	
	name (str) – The name of this stage (handled automatically by fast-flow)


	out_dir (str) – Where to put the summary table (handled automatically by
fast-flow)








Example

variables:
  - Muon_pt: "sqrt(Muon_px**2 + Muon_py**2)"
  - Muon_is_good: (Muon_iso > 0.3) & (Muon_pt > 10)
  - NGoodMuons: {reduce: count_nonzero, formula: Muon_is_good}
  - First_Muon_pt: {reduce: 0, formula: Muon_pt}






See also


	fast_carpenter.define.reductions– for how reductions are handled and exactly what is valid.


	numexpr [https://numexpr.readthedocs.io/en/latest/]: which is used for
the internal expression handling.







	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/variables.py#L70-L75]

	








	
class fast_carpenter.define.SystematicWeights(name, out_dir, weights, out_format='weight_{}', extra_variations=[])[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/systematics.py#L9-L71]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Combines multiple weights and variations to produce a single event weight

To study the impact of systematic uncertainties it is common to re-weight events
using a variation of the weights representing, for example, a 1-sigma increase or decrease
in the weights.  Once there are multiple weight schemes involved writing out each possible combination
of these weights becomes tedious and potentially error-prone; this stage makes it easier.

It forms the nominal weight for each event by multiplying all nominal weights together,
then the specific variation by replacing a given nominal weight with its corresponding “up” or “down” variation.

Each variation of a weight should just be a string giving an expression to
use for that variation.  This stage then combines these into a single
expression by joining each set of variations with “*”, i.e. multiplying
them together.  The final results then use an internal Define
stage to do the calculation.


	Parameters

	
	weights (dictionary[str [https://docs.python.org/3/library/stdtypes.html#str], dictionary]) – A Dictionary of weight variations
to combine.  The keys in this dictionary will determine how this
variation is called in the output variable.  The values of this
dictionary should either be a single string – the name of the input
variable to use for the “nominal” variation, or a dictionary containing
any of the keys, nominal, up, or down.  Each of these should
then have a value providing the expression to use for that variation/


	out_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – The format string to use to build the name of the
output variations.  Defaults to “weight_{}”.  Should contain a pair
of empty braces which will be replaced with the name for the current
variation, e.g. “nominal” or “PileUp_up”.


	extra_variations (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of additional variations to allow






	Other Parameters

	
	name (str) – The name of this stage (handled automatically by fast-flow)


	out_dir (str) – Where to put the summary table (handled automatically by
fast-flow)








Example

syst_weights:
  energy_scale: {nominal: WeightEnergyScale, up: WeightEnergyScaleUp, down: WeightEnergyScaleDown}
  trigger: TriggerEfficiency
  recon: {nominal: ReconEfficiency, up: ReconEfficiency_up}





which will create 4 new variables:

weight_nominal =  WeightEnergyScale * TriggerEfficiency * ReconEfficiency
weight_energy_scale_up =  WeightEnergyScaleUp * TriggerEfficiency * ReconEfficiency
weight_energy_scale_down =  WeightEnergyScaleDown * TriggerEfficiency * ReconEfficiency
weight_recon_up =  WeightEnergyScale * TriggerEfficiency * ReconEfficiency_up






	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/systematics.py#L68-L71]

	








Submodules



	fast_carpenter.define.reductions module

	fast_carpenter.define.systematics module

	fast_carpenter.define.variables module











          

      

      

    

  

    
      
          
            
  
fast_carpenter.define.reductions module


	
fast_carpenter.define.reductions.get_pandas_reduction(stage_name, reduction)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/reductions.py#L105-L124]

	







          

      

      

    

  

    
      
          
            
  
fast_carpenter.define.systematics module


	
exception fast_carpenter.define.systematics.BadSystematicWeightsConfig[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/systematics.py#L5-L6]

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]






	
class fast_carpenter.define.systematics.SystematicWeights(name, out_dir, weights, out_format='weight_{}', extra_variations=[])[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/systematics.py#L9-L71]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Combines multiple weights and variations to produce a single event weight

To study the impact of systematic uncertainties it is common to re-weight events
using a variation of the weights representing, for example, a 1-sigma increase or decrease
in the weights.  Once there are multiple weight schemes involved writing out each possible combination
of these weights becomes tedious and potentially error-prone; this stage makes it easier.

It forms the nominal weight for each event by multiplying all nominal weights together,
then the specific variation by replacing a given nominal weight with its corresponding “up” or “down” variation.

Each variation of a weight should just be a string giving an expression to
use for that variation.  This stage then combines these into a single
expression by joining each set of variations with “*”, i.e. multiplying
them together.  The final results then use an internal Define
stage to do the calculation.


	Parameters

	
	weights (dictionary[str [https://docs.python.org/3/library/stdtypes.html#str], dictionary]) – A Dictionary of weight variations
to combine.  The keys in this dictionary will determine how this
variation is called in the output variable.  The values of this
dictionary should either be a single string – the name of the input
variable to use for the “nominal” variation, or a dictionary containing
any of the keys, nominal, up, or down.  Each of these should
then have a value providing the expression to use for that variation/


	out_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – The format string to use to build the name of the
output variations.  Defaults to “weight_{}”.  Should contain a pair
of empty braces which will be replaced with the name for the current
variation, e.g. “nominal” or “PileUp_up”.


	extra_variations (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of additional variations to allow






	Other Parameters

	
	name (str) – The name of this stage (handled automatically by fast-flow)


	out_dir (str) – Where to put the summary table (handled automatically by
fast-flow)








Example

syst_weights:
  energy_scale: {nominal: WeightEnergyScale, up: WeightEnergyScaleUp, down: WeightEnergyScaleDown}
  trigger: TriggerEfficiency
  recon: {nominal: ReconEfficiency, up: ReconEfficiency_up}





which will create 4 new variables:

weight_nominal =  WeightEnergyScale * TriggerEfficiency * ReconEfficiency
weight_energy_scale_up =  WeightEnergyScaleUp * TriggerEfficiency * ReconEfficiency
weight_energy_scale_down =  WeightEnergyScaleDown * TriggerEfficiency * ReconEfficiency
weight_recon_up =  WeightEnergyScale * TriggerEfficiency * ReconEfficiency_up






	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/systematics.py#L68-L71]

	











          

      

      

    

  

    
      
          
            
  
fast_carpenter.define.variables module


	
exception fast_carpenter.define.variables.BadVariablesConfig[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/variables.py#L11-L12]

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]






	
class fast_carpenter.define.variables.CalculationCfg(name, expression, reduction, fill_missing, mask)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/variables.py]

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]


	
expression

	Alias for field number 1






	
fill_missing

	Alias for field number 3






	
mask

	Alias for field number 4






	
name

	Alias for field number 0






	
reduction

	Alias for field number 2










	
class fast_carpenter.define.variables.Define(name, out_dir, variables)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/variables.py#L15-L75]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Creates new variables using a string-based expression.

There are two types of expressions:



	Simple formulae, and


	Reducing formulae.







The essential difference, unfortunately, is an internal one: simple
expressions are nearly directly handled by numexpr [https://numexpr.readthedocs.io/en/latest/], whereas reducing expressions
add a layer on top.

From a users perspective, however, simple expressions are those that
preserve the dimensionality of the input.  If one of the input variables
represents a list of values for each event  (whose length might vary), then
the output will contain an equal-length list of values for each event.

If, however, a reducing expression is used, then there will be one less
dimension on the resulting variable.  In this case, if an input variable
has a list of values for each event, the result of the expression will only
contain a single value per event.


	Parameters

	variables (list [https://docs.python.org/3/library/stdtypes.html#list][dictionary]) – A list of single-length dictionaries whose
key is the name of the resulting variable, and whose value is the
expression to create it.



	Other Parameters

	
	name (str) – The name of this stage (handled automatically by fast-flow)


	out_dir (str) – Where to put the summary table (handled automatically by
fast-flow)








Example

variables:
  - Muon_pt: "sqrt(Muon_px**2 + Muon_py**2)"
  - Muon_is_good: (Muon_iso > 0.3) & (Muon_pt > 10)
  - NGoodMuons: {reduce: count_nonzero, formula: Muon_is_good}
  - First_Muon_pt: {reduce: 0, formula: Muon_pt}






See also


	fast_carpenter.define.reductions– for how reductions are handled and exactly what is valid.


	numexpr [https://numexpr.readthedocs.io/en/latest/]: which is used for
the internal expression handling.







	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/variables.py#L70-L75]

	








	
class fast_carpenter.define.variables.DefinePandas(name, out_dir, variables)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/variables.py#L78-L100]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/variables.py#L85-L100]

	








	
fast_carpenter.define.variables.full_evaluate(tree, expression, fill_missing, mask=None, reduction=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/variables.py#L142-L149]

	







          

      

      

    

  

    
      
          
            
  
fast_carpenter.define.reductions module


	
fast_carpenter.define.reductions.get_pandas_reduction(stage_name, reduction)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/reductions.py#L105-L124]

	







          

      

      

    

  

    
      
          
            
  
fast_carpenter.define.systematics module


	
exception fast_carpenter.define.systematics.BadSystematicWeightsConfig[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/systematics.py#L5-L6]

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]






	
class fast_carpenter.define.systematics.SystematicWeights(name, out_dir, weights, out_format='weight_{}', extra_variations=[])[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/systematics.py#L9-L71]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Combines multiple weights and variations to produce a single event weight

To study the impact of systematic uncertainties it is common to re-weight events
using a variation of the weights representing, for example, a 1-sigma increase or decrease
in the weights.  Once there are multiple weight schemes involved writing out each possible combination
of these weights becomes tedious and potentially error-prone; this stage makes it easier.

It forms the nominal weight for each event by multiplying all nominal weights together,
then the specific variation by replacing a given nominal weight with its corresponding “up” or “down” variation.

Each variation of a weight should just be a string giving an expression to
use for that variation.  This stage then combines these into a single
expression by joining each set of variations with “*”, i.e. multiplying
them together.  The final results then use an internal Define
stage to do the calculation.


	Parameters

	
	weights (dictionary[str [https://docs.python.org/3/library/stdtypes.html#str], dictionary]) – A Dictionary of weight variations
to combine.  The keys in this dictionary will determine how this
variation is called in the output variable.  The values of this
dictionary should either be a single string – the name of the input
variable to use for the “nominal” variation, or a dictionary containing
any of the keys, nominal, up, or down.  Each of these should
then have a value providing the expression to use for that variation/


	out_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – The format string to use to build the name of the
output variations.  Defaults to “weight_{}”.  Should contain a pair
of empty braces which will be replaced with the name for the current
variation, e.g. “nominal” or “PileUp_up”.


	extra_variations (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of additional variations to allow






	Other Parameters

	
	name (str) – The name of this stage (handled automatically by fast-flow)


	out_dir (str) – Where to put the summary table (handled automatically by
fast-flow)








Example

syst_weights:
  energy_scale: {nominal: WeightEnergyScale, up: WeightEnergyScaleUp, down: WeightEnergyScaleDown}
  trigger: TriggerEfficiency
  recon: {nominal: ReconEfficiency, up: ReconEfficiency_up}





which will create 4 new variables:

weight_nominal =  WeightEnergyScale * TriggerEfficiency * ReconEfficiency
weight_energy_scale_up =  WeightEnergyScaleUp * TriggerEfficiency * ReconEfficiency
weight_energy_scale_down =  WeightEnergyScaleDown * TriggerEfficiency * ReconEfficiency
weight_recon_up =  WeightEnergyScale * TriggerEfficiency * ReconEfficiency_up






	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/systematics.py#L68-L71]

	











          

      

      

    

  

    
      
          
            
  
fast_carpenter.define.variables module


	
exception fast_carpenter.define.variables.BadVariablesConfig[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/variables.py#L11-L12]

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]






	
class fast_carpenter.define.variables.CalculationCfg(name, expression, reduction, fill_missing, mask)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/variables.py]

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]


	
expression

	Alias for field number 1






	
fill_missing

	Alias for field number 3






	
mask

	Alias for field number 4






	
name

	Alias for field number 0






	
reduction

	Alias for field number 2










	
class fast_carpenter.define.variables.Define(name, out_dir, variables)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/variables.py#L15-L75]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Creates new variables using a string-based expression.

There are two types of expressions:



	Simple formulae, and


	Reducing formulae.







The essential difference, unfortunately, is an internal one: simple
expressions are nearly directly handled by numexpr [https://numexpr.readthedocs.io/en/latest/], whereas reducing expressions
add a layer on top.

From a users perspective, however, simple expressions are those that
preserve the dimensionality of the input.  If one of the input variables
represents a list of values for each event  (whose length might vary), then
the output will contain an equal-length list of values for each event.

If, however, a reducing expression is used, then there will be one less
dimension on the resulting variable.  In this case, if an input variable
has a list of values for each event, the result of the expression will only
contain a single value per event.


	Parameters

	variables (list [https://docs.python.org/3/library/stdtypes.html#list][dictionary]) – A list of single-length dictionaries whose
key is the name of the resulting variable, and whose value is the
expression to create it.



	Other Parameters

	
	name (str) – The name of this stage (handled automatically by fast-flow)


	out_dir (str) – Where to put the summary table (handled automatically by
fast-flow)








Example

variables:
  - Muon_pt: "sqrt(Muon_px**2 + Muon_py**2)"
  - Muon_is_good: (Muon_iso > 0.3) & (Muon_pt > 10)
  - NGoodMuons: {reduce: count_nonzero, formula: Muon_is_good}
  - First_Muon_pt: {reduce: 0, formula: Muon_pt}






See also


	fast_carpenter.define.reductions– for how reductions are handled and exactly what is valid.


	numexpr [https://numexpr.readthedocs.io/en/latest/]: which is used for
the internal expression handling.







	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/variables.py#L70-L75]

	








	
class fast_carpenter.define.variables.DefinePandas(name, out_dir, variables)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/variables.py#L78-L100]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/variables.py#L85-L100]

	








	
fast_carpenter.define.variables.full_evaluate(tree, expression, fill_missing, mask=None, reduction=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/define/variables.py#L142-L149]

	







          

      

      

    

  

    
      
          
            
  
fast_carpenter.event_builder module


	
class fast_carpenter.event_builder.BEventsWrapped(tree, *args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/event_builder.py#L30-L50]

	Bases: atuproot.BEvents.BEvents






	
class fast_carpenter.event_builder.EventBuilder(config)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/event_builder.py#L53-L84]

	Bases: object [https://docs.python.org/3/library/functions.html#object]






	
class fast_carpenter.event_builder.EventRanger[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/event_builder.py#L6-L27]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
entries_in_block

	




	
set_owner(owner)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/event_builder.py#L10-L11]

	




	
start_entry

	




	
stop_entry

	











          

      

      

    

  

    
      
          
            
  
fast_carpenter.expressions module


	
fast_carpenter.expressions.get_branches(cut, valid)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/expressions.py#L22-L39]

	




	
fast_carpenter.expressions.evaluate(tree, expression)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/expressions.py#L112-L117]

	







          

      

      

    

  

    
      
          
            
  
fast_carpenter.help module


	
class fast_carpenter.help.StageGuidanceHelper(stage_class, module_name)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/help.py#L7-L48]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
class_name

	




	
docstring(nlines=-1)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/help.py#L32-L48]

	




	
matches(regex)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/help.py#L22-L25]

	




	
parameters()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/help.py#L27-L30]

	




	
stage

	








	
fast_carpenter.help.format_signature(args, vargs, kwargs, defaults, annots)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/help.py#L57-L68]

	




	
fast_carpenter.help.get_signature(function)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/help.py#L51-L54]

	




	
fast_carpenter.help.help_stages(stage_name, full_output=False)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/help.py#L74-L92]

	







          

      

      

    

  

    
      
          
            
  
fast_carpenter.masked_tree module


	
class fast_carpenter.masked_tree.MaskedUprootTree(tree, event_ranger, mask=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/masked_tree.py#L6-L93]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
class PandasWrap(owner)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/masked_tree.py#L22-L31]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
df(*args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/masked_tree.py#L26-L31]

	








	
apply_mask(new_mask)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/masked_tree.py#L75-L79]

	




	
array(*args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/masked_tree.py#L43-L47]

	




	
arrays(*args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/masked_tree.py#L49-L69]

	




	
mask

	




	
pandas

	




	
reset_mask()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/masked_tree.py#L92-L93]

	




	
unmasked_array(*args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/masked_tree.py#L37-L38]

	




	
unmasked_arrays(*args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/masked_tree.py#L40-L41]

	








	
fast_carpenter.masked_tree.mask_df(df, mask, start_event)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/masked_tree.py#L110-L120]

	







          

      

      

    

  

    
      
          
            
  
fast_carpenter.selection package


	
class fast_carpenter.selection.CutFlow(name, out_dir, selection_file=None, keep_unique_id=False, selection=None, counter=True, weights=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L106-L225]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Prevents subsequent stages seeing certain events.

The two most important  parameters to understand are the selection and
weights parameters.


	Parameters

	
	selection (str [https://docs.python.org/3/library/stdtypes.html#str] or dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The criteria for selecting events, formed by a
nested set of “cuts”.  Each cut must either be a valid Expressions [https://docs.python.org/3/reference/expressions.html#expressions]
or a single-length dictionary, with one of Any or All as the key,
and a list of cuts as the value.


	weights (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – How to weight events in the
output summary table.  Must be either a single variable, a list of
variables, or a dictionary where the values are variables in the data and
keys are the column names that these weights should be called in the
output tables.








Example

Mask events using a single cut based on the nJet variable being
greater than 2 and weight events in the summary table by the
EventWeight variable:

cut_flow_1:
    selection:
        nJet > 2
    weights: EventWeight





Mask events by requiring both the nMuon variable being greater than 2
and the first Muon_energy value in each event being above 20.  Don’t weight
events in the summary table:

cut_flow_2:
    selection:
        All:
          - nMuon > 2
          - {reduce: 0, formula: Muon_energy > 20}





Mask events by requiring the nMuon variable be greater than 2 and
either the first Muon_energy value in each event is above 20 or the
total_energy is greater than 100.  The summary table will weight
events by both the EventWeight variable (called weight_nominal in the
table) and the SystUp variable (called weight_syst_up in the summary):

cut_flow_3:
    selection:
        All:
          - nMuon > 2
          - Any:
            - {reduce: 0, formula: Muon_energy > 20}
            - total_energy > 100
    weights: {weight_nominal: EventWeight, weight_syst_up: SystUp}






	Other Parameters

	
	name (str) – The name of this stage (handled automatically by fast-flow)


	out_dir (str) – Where to put the summary table (handled automatically by
fast-flow)


	selection_file (str) – Deprecated


	keep_unique_id (bool) – If True, the summary table will contain a
column that gives each cut a unique id.  This is used internally to
maintain the cut order, and often will not be useful in subsequent
manipulation of the output table, so by default this is removed.


	counter (bool) – Currently unused






	Raises

	BadCutflowConfig – If neither or both of selection and
selection_file are provided, or if a bad selection or
weight configuration is given.






See also

SelectPhaseSpace: Adds the resulting event-mask as a new
variable to the data.

selection.filters.build_selection(): Handles the actual creation of
the event selection, based on the configuration.

numexpr [https://numexpr.readthedocs.io/en/latest/]: which is used for
the internal expression handling.




	
collector()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L211-L217]

	




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L219-L222]

	




	
merge(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L224-L225]

	








	
class fast_carpenter.selection.SelectPhaseSpace(name, out_dir, region_name, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L228-L250]

	Bases: fast_carpenter.selection.stage.CutFlow

Creates an event-mask and adds it to the data-space.

This is identical to the CutFlow class, except that the resulting
mask is added to the list of variables in the data-space, rather than being
used directly to remove events.  This allows multiple “regions” to be defined
using different CutFlows in a single configuration.


	Parameters

	region_name – The name given to the resulting mask when added to back to
the data-space.






See also

CutFlow: for a description of the other parameters.




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L247-L250]

	








Submodules



	fast_carpenter.selection.filters module

	fast_carpenter.selection.stage module











          

      

      

    

  

    
      
          
            
  
fast_carpenter.selection.filters module


	
class fast_carpenter.selection.filters.All(selection, depth, cut_id, weights)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L159-L174]

	Bases: fast_carpenter.selection.filters.BaseFilter






	
class fast_carpenter.selection.filters.Any(selection, depth, cut_id, weights)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L177-L193]

	Bases: fast_carpenter.selection.filters.BaseFilter






	
class fast_carpenter.selection.filters.BaseFilter(selection, depth, cut_id, weights)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L69-L129]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
columns

	




	
increment_counters(data, is_mc, excl, before, after)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L119-L122]

	




	
index_values

	




	
merge(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L110-L117]

	




	
to_dataframe()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L104-L108]

	




	
values

	








	
class fast_carpenter.selection.filters.Counter(weights)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L24-L66]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
add(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L64-L66]

	




	
counts

	




	
static get_unweighted_increment(data, mask)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L30-L37]

	




	
static get_weighted_increment(weight_names, data, mask)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L39-L44]

	




	
increment(data, is_mc, mask=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L46-L58]

	








	
class fast_carpenter.selection.filters.OuterCounterIncrementer(*args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L196-L209]

	Bases: fast_carpenter.selection.filters.BaseFilter






	
class fast_carpenter.selection.filters.ReduceSingleCut(stage_name, depth, cut_id, weights, selection)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L132-L147]

	Bases: fast_carpenter.selection.filters.BaseFilter






	
class fast_carpenter.selection.filters.SingleCut(selection, depth, cut_id, weights)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L150-L156]

	Bases: fast_carpenter.selection.filters.BaseFilter






	
fast_carpenter.selection.filters.build_selection(stage_name, config, weights=[])[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L212-L225]

	Creates event selectors based on the configuration.


	Parameters

	
	stage_name – Used to help in error messages.


	config – The event selection configuration.


	weights – How to weight events, used to produce the resulting cut
efficiency table.






	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if any of the configurations are invalid.










	
fast_carpenter.selection.filters.handle_config(stage_name, config, weights, depth=0, cut_id=[0])[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L228-L249]

	




	
fast_carpenter.selection.filters.safe_and(left, right)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L8-L13]

	




	
fast_carpenter.selection.filters.safe_or(left, right)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L16-L21]

	







          

      

      

    

  

    
      
          
            
  
fast_carpenter.selection.stage module

Stages to remove events from subsequent stages

Provides two stages:



	CutFlow – Prevent subsequent stages from seeing certain events,


	SelectPhaseSpace – Create a new variable which can be used as a mask







Both stages are configured very similarly, and both stages produce an output
table describing how many events pass each subsequent cut to make it into the
final mask.


	
class fast_carpenter.selection.stage.CutFlow(name, out_dir, selection_file=None, keep_unique_id=False, selection=None, counter=True, weights=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L106-L225]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Prevents subsequent stages seeing certain events.

The two most important  parameters to understand are the selection and
weights parameters.


	Parameters

	
	selection (str [https://docs.python.org/3/library/stdtypes.html#str] or dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The criteria for selecting events, formed by a
nested set of “cuts”.  Each cut must either be a valid Expressions [https://docs.python.org/3/reference/expressions.html#expressions]
or a single-length dictionary, with one of Any or All as the key,
and a list of cuts as the value.


	weights (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – How to weight events in the
output summary table.  Must be either a single variable, a list of
variables, or a dictionary where the values are variables in the data and
keys are the column names that these weights should be called in the
output tables.








Example

Mask events using a single cut based on the nJet variable being
greater than 2 and weight events in the summary table by the
EventWeight variable:

cut_flow_1:
    selection:
        nJet > 2
    weights: EventWeight





Mask events by requiring both the nMuon variable being greater than 2
and the first Muon_energy value in each event being above 20.  Don’t weight
events in the summary table:

cut_flow_2:
    selection:
        All:
          - nMuon > 2
          - {reduce: 0, formula: Muon_energy > 20}





Mask events by requiring the nMuon variable be greater than 2 and
either the first Muon_energy value in each event is above 20 or the
total_energy is greater than 100.  The summary table will weight
events by both the EventWeight variable (called weight_nominal in the
table) and the SystUp variable (called weight_syst_up in the summary):

cut_flow_3:
    selection:
        All:
          - nMuon > 2
          - Any:
            - {reduce: 0, formula: Muon_energy > 20}
            - total_energy > 100
    weights: {weight_nominal: EventWeight, weight_syst_up: SystUp}






	Other Parameters

	
	name (str) – The name of this stage (handled automatically by fast-flow)


	out_dir (str) – Where to put the summary table (handled automatically by
fast-flow)


	selection_file (str) – Deprecated


	keep_unique_id (bool) – If True, the summary table will contain a
column that gives each cut a unique id.  This is used internally to
maintain the cut order, and often will not be useful in subsequent
manipulation of the output table, so by default this is removed.


	counter (bool) – Currently unused






	Raises

	BadCutflowConfig – If neither or both of selection and
selection_file are provided, or if a bad selection or
weight configuration is given.






See also

SelectPhaseSpace: Adds the resulting event-mask as a new
variable to the data.

selection.filters.build_selection(): Handles the actual creation of
the event selection, based on the configuration.

numexpr [https://numexpr.readthedocs.io/en/latest/]: which is used for
the internal expression handling.




	
collector()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L211-L217]

	




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L219-L222]

	




	
merge(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L224-L225]

	








	
class fast_carpenter.selection.stage.SelectPhaseSpace(name, out_dir, region_name, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L228-L250]

	Bases: fast_carpenter.selection.stage.CutFlow

Creates an event-mask and adds it to the data-space.

This is identical to the CutFlow class, except that the resulting
mask is added to the list of variables in the data-space, rather than being
used directly to remove events.  This allows multiple “regions” to be defined
using different CutFlows in a single configuration.


	Parameters

	region_name – The name given to the resulting mask when added to back to
the data-space.






See also

CutFlow: for a description of the other parameters.




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L247-L250]

	











          

      

      

    

  

    
      
          
            
  
fast_carpenter.selection.filters module


	
class fast_carpenter.selection.filters.All(selection, depth, cut_id, weights)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L159-L174]

	Bases: fast_carpenter.selection.filters.BaseFilter






	
class fast_carpenter.selection.filters.Any(selection, depth, cut_id, weights)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L177-L193]

	Bases: fast_carpenter.selection.filters.BaseFilter






	
class fast_carpenter.selection.filters.BaseFilter(selection, depth, cut_id, weights)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L69-L129]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
columns

	




	
increment_counters(data, is_mc, excl, before, after)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L119-L122]

	




	
index_values

	




	
merge(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L110-L117]

	




	
to_dataframe()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L104-L108]

	




	
values

	








	
class fast_carpenter.selection.filters.Counter(weights)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L24-L66]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
add(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L64-L66]

	




	
counts

	




	
static get_unweighted_increment(data, mask)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L30-L37]

	




	
static get_weighted_increment(weight_names, data, mask)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L39-L44]

	




	
increment(data, is_mc, mask=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L46-L58]

	








	
class fast_carpenter.selection.filters.OuterCounterIncrementer(*args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L196-L209]

	Bases: fast_carpenter.selection.filters.BaseFilter






	
class fast_carpenter.selection.filters.ReduceSingleCut(stage_name, depth, cut_id, weights, selection)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L132-L147]

	Bases: fast_carpenter.selection.filters.BaseFilter






	
class fast_carpenter.selection.filters.SingleCut(selection, depth, cut_id, weights)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L150-L156]

	Bases: fast_carpenter.selection.filters.BaseFilter






	
fast_carpenter.selection.filters.build_selection(stage_name, config, weights=[])[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L212-L225]

	Creates event selectors based on the configuration.


	Parameters

	
	stage_name – Used to help in error messages.


	config – The event selection configuration.


	weights – How to weight events, used to produce the resulting cut
efficiency table.






	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if any of the configurations are invalid.










	
fast_carpenter.selection.filters.handle_config(stage_name, config, weights, depth=0, cut_id=[0])[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L228-L249]

	




	
fast_carpenter.selection.filters.safe_and(left, right)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L8-L13]

	




	
fast_carpenter.selection.filters.safe_or(left, right)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/filters.py#L16-L21]

	







          

      

      

    

  

    
      
          
            
  
fast_carpenter.selection.stage module

Stages to remove events from subsequent stages

Provides two stages:



	CutFlow – Prevent subsequent stages from seeing certain events,


	SelectPhaseSpace – Create a new variable which can be used as a mask







Both stages are configured very similarly, and both stages produce an output
table describing how many events pass each subsequent cut to make it into the
final mask.


	
class fast_carpenter.selection.stage.CutFlow(name, out_dir, selection_file=None, keep_unique_id=False, selection=None, counter=True, weights=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L106-L225]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Prevents subsequent stages seeing certain events.

The two most important  parameters to understand are the selection and
weights parameters.


	Parameters

	
	selection (str [https://docs.python.org/3/library/stdtypes.html#str] or dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The criteria for selecting events, formed by a
nested set of “cuts”.  Each cut must either be a valid Expressions [https://docs.python.org/3/reference/expressions.html#expressions]
or a single-length dictionary, with one of Any or All as the key,
and a list of cuts as the value.


	weights (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – How to weight events in the
output summary table.  Must be either a single variable, a list of
variables, or a dictionary where the values are variables in the data and
keys are the column names that these weights should be called in the
output tables.








Example

Mask events using a single cut based on the nJet variable being
greater than 2 and weight events in the summary table by the
EventWeight variable:

cut_flow_1:
    selection:
        nJet > 2
    weights: EventWeight





Mask events by requiring both the nMuon variable being greater than 2
and the first Muon_energy value in each event being above 20.  Don’t weight
events in the summary table:

cut_flow_2:
    selection:
        All:
          - nMuon > 2
          - {reduce: 0, formula: Muon_energy > 20}





Mask events by requiring the nMuon variable be greater than 2 and
either the first Muon_energy value in each event is above 20 or the
total_energy is greater than 100.  The summary table will weight
events by both the EventWeight variable (called weight_nominal in the
table) and the SystUp variable (called weight_syst_up in the summary):

cut_flow_3:
    selection:
        All:
          - nMuon > 2
          - Any:
            - {reduce: 0, formula: Muon_energy > 20}
            - total_energy > 100
    weights: {weight_nominal: EventWeight, weight_syst_up: SystUp}






	Other Parameters

	
	name (str) – The name of this stage (handled automatically by fast-flow)


	out_dir (str) – Where to put the summary table (handled automatically by
fast-flow)


	selection_file (str) – Deprecated


	keep_unique_id (bool) – If True, the summary table will contain a
column that gives each cut a unique id.  This is used internally to
maintain the cut order, and often will not be useful in subsequent
manipulation of the output table, so by default this is removed.


	counter (bool) – Currently unused






	Raises

	BadCutflowConfig – If neither or both of selection and
selection_file are provided, or if a bad selection or
weight configuration is given.






See also

SelectPhaseSpace: Adds the resulting event-mask as a new
variable to the data.

selection.filters.build_selection(): Handles the actual creation of
the event selection, based on the configuration.

numexpr [https://numexpr.readthedocs.io/en/latest/]: which is used for
the internal expression handling.




	
collector()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L211-L217]

	




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L219-L222]

	




	
merge(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L224-L225]

	








	
class fast_carpenter.selection.stage.SelectPhaseSpace(name, out_dir, region_name, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L228-L250]

	Bases: fast_carpenter.selection.stage.CutFlow

Creates an event-mask and adds it to the data-space.

This is identical to the CutFlow class, except that the resulting
mask is added to the list of variables in the data-space, rather than being
used directly to remove events.  This allows multiple “regions” to be defined
using different CutFlows in a single configuration.


	Parameters

	region_name – The name given to the resulting mask when added to back to
the data-space.






See also

CutFlow: for a description of the other parameters.




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/selection/stage.py#L247-L250]

	











          

      

      

    

  

    
      
          
            
  
fast_carpenter.summary package


	
class fast_carpenter.summary.BuildAghast(name, out_dir, binning, weights=None, dataset_col=True)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L87-L134]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Builds an aghast histogram.

Can be parametrized in the same way as
fast_carpenter.BinnedDataframe (and actually uses that stage
behind the scenes) but additionally writes out a Ghast which can be
reloaded with other ghast packages.


See also


	fast_carpenter.BinnedDataframe for a version which only
produces binned pandas dataframes.


	The aghast main page: https://github.com/scikit-hep/aghast.







	
collector()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L119-L128]

	




	
contents

	




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L130-L131]

	




	
merge(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L133-L134]

	








	
class fast_carpenter.summary.BinnedDataframe(name, out_dir, binning, weights=None, dataset_col=True, pad_missing=False, file_format=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L109-L219]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Produces a binned dataframe (a multi-dimensional histogram).

def __init__(self, name, out_dir, binning, weights=None, dataset_col=False):


	Parameters

	
	binning (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – A list of dictionaries describing the variables to
bin on, and how they should be binned.  Each of these dictionaries can
contain the following:








	Parameter

	Default

	Description





	in

	
	The name of the attribute on the event to use.



	out

	same as in

	The name of the column to be filled in the output dataframe.



	bins

	None

	
Must be either None or a dictionary.  If a dictionary,
it must contain one of the follow sets of

key-value pairs:


1. nbins, low, high: which are used to
produce a list of bin edges equivalent to:


numpy.linspace(low, high, nbins + 1)



2. edges: which is treated as the list of bin
edges directly.



If set to None, then the input variable is assumed
to already be categorical (ie. binned or discrete)












	weights (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – How to weight events in the
output table.  Must be either a single variable, a list of
variables, or a dictionary where the values are variables in the data and
keys are the column names that these weights should be called in the
output tables.


	file_format (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – determines the file format to
use to save the binned dataframe to disk.  Should be either a) a string with
the file format, b) a dict containing the keyword extension to give the file
format and then all other keyword-argument pairs are passed on to the
corresponding pandas function, or c) a list of values matching a) or b).


	dataset_col (bool [https://docs.python.org/3/library/functions.html#bool]) – adds an extra binning column with the name for each dataset.


	pad_missing (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, any bins that don’t contain data are
excluded from the stored dataframe.  Leaving this False can save
some disk-space and improve processing time, particularly if the bins are
only very sparsely filled.






	Other Parameters

	
	name (str) – The name of this stage (handled automatically by fast-flow)


	out_dir (str) – Where to put the summary table (handled automatically by
fast-flow)






	Raises

	BadBinnedDataframeConfig – If there is an issue with the binning description.






	
collector()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L178-L188]

	




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L190-L211]

	




	
merge(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L213-L219]

	








	
class fast_carpenter.summary.EventByEventDataframe(name, out_dir, collections, mask=None, flatten=True)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/event_level_dataframe.py#L45-L86]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Write out a pandas dataframe with event-level values


	
collector()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/event_level_dataframe.py#L74-L78]

	




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/event_level_dataframe.py#L60-L72]

	




	
merge(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/event_level_dataframe.py#L80-L86]

	








Submodules



	fast_carpenter.summary.aghast module

	fast_carpenter.summary.binned_dataframe module

	fast_carpenter.summary.binning_config module

	fast_carpenter.summary.event_level_dataframe module

	fast_carpenter.summary.import_aghast module











          

      

      

    

  

    
      
          
            
  
fast_carpenter.summary.aghast module


	
class fast_carpenter.summary.aghast.BuildAghast(name, out_dir, binning, weights=None, dataset_col=True)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L87-L134]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Builds an aghast histogram.

Can be parametrized in the same way as
fast_carpenter.BinnedDataframe (and actually uses that stage
behind the scenes) but additionally writes out a Ghast which can be
reloaded with other ghast packages.


See also


	fast_carpenter.BinnedDataframe for a version which only
produces binned pandas dataframes.


	The aghast main page: https://github.com/scikit-hep/aghast.







	
collector()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L119-L128]

	




	
contents

	




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L130-L131]

	




	
merge(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L133-L134]

	








	
class fast_carpenter.summary.aghast.Collector(filename, axes, edges, by_dataset)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L10-L29]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
collect(dataset_readers_list)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L17-L29]

	








	
fast_carpenter.summary.aghast.bin_one_dimension(low=None, high=None, nbins=None, edges=None, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L70-L84]

	




	
fast_carpenter.summary.aghast.complete_axes(axes, df_index)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L53-L62]

	




	
fast_carpenter.summary.aghast.convert_to_counters(df)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L32-L50]

	







          

      

      

    

  

    
      
          
            
  
fast_carpenter.summary.binned_dataframe module

Summarize the data by producing binned and possibly weighted counts of the data.


	
class fast_carpenter.summary.binned_dataframe.BinnedDataframe(name, out_dir, binning, weights=None, dataset_col=True, pad_missing=False, file_format=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L109-L219]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Produces a binned dataframe (a multi-dimensional histogram).

def __init__(self, name, out_dir, binning, weights=None, dataset_col=False):


	Parameters

	
	binning (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – A list of dictionaries describing the variables to
bin on, and how they should be binned.  Each of these dictionaries can
contain the following:








	Parameter

	Default

	Description





	in

	
	The name of the attribute on the event to use.



	out

	same as in

	The name of the column to be filled in the output dataframe.



	bins

	None

	
Must be either None or a dictionary.  If a dictionary,
it must contain one of the follow sets of

key-value pairs:


1. nbins, low, high: which are used to
produce a list of bin edges equivalent to:


numpy.linspace(low, high, nbins + 1)



2. edges: which is treated as the list of bin
edges directly.



If set to None, then the input variable is assumed
to already be categorical (ie. binned or discrete)












	weights (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – How to weight events in the
output table.  Must be either a single variable, a list of
variables, or a dictionary where the values are variables in the data and
keys are the column names that these weights should be called in the
output tables.


	file_format (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – determines the file format to
use to save the binned dataframe to disk.  Should be either a) a string with
the file format, b) a dict containing the keyword extension to give the file
format and then all other keyword-argument pairs are passed on to the
corresponding pandas function, or c) a list of values matching a) or b).


	dataset_col (bool [https://docs.python.org/3/library/functions.html#bool]) – adds an extra binning column with the name for each dataset.


	pad_missing (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, any bins that don’t contain data are
excluded from the stored dataframe.  Leaving this False can save
some disk-space and improve processing time, particularly if the bins are
only very sparsely filled.






	Other Parameters

	
	name (str) – The name of this stage (handled automatically by fast-flow)


	out_dir (str) – Where to put the summary table (handled automatically by
fast-flow)






	Raises

	BadBinnedDataframeConfig – If there is an issue with the binning description.






	
collector()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L178-L188]

	




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L190-L211]

	




	
merge(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L213-L219]

	








	
class fast_carpenter.summary.binned_dataframe.Collector(filename, dataset_col, binnings, file_format)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L12-L49]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
collect(dataset_readers_list, doReturn=True, writeFiles=True)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L21-L44]

	




	
valid_ext = {'dta': 'stata', 'h5': 'hdf', 'msg': 'msgpack', 'p': 'pickle', 'pkl': 'pickle', 'xlsx': 'excel'}

	








	
fast_carpenter.summary.binned_dataframe.combined_dataframes(dataset_readers_list, dataset_col, binnings=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L52-L64]

	




	
fast_carpenter.summary.binned_dataframe.densify_dataframe(in_df, binnings)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L95-L106]

	




	
fast_carpenter.summary.binned_dataframe.explode(df)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L268-L298]

	Based on this answer:
https://stackoverflow.com/questions/12680754/split-explode-pandas    -dataframe-string-entry-to-separate-rows/40449726#40449726









          

      

      

    

  

    
      
          
            
  
fast_carpenter.summary.binning_config module


	
exception fast_carpenter.summary.binning_config.BadBinnedDataframeConfig[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binning_config.py#L6-L7]

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]






	
fast_carpenter.summary.binning_config.bin_one_dimension(low=None, high=None, nbins=None, edges=None, overflow=True, underflow=True)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binning_config.py#L63-L81]

	




	
fast_carpenter.summary.binning_config.create_binning_list(name, bin_list, make_bins=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binning_config.py#L10-L31]

	




	
fast_carpenter.summary.binning_config.create_file_format(stage_name, file_format)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binning_config.py#L97-L110]

	




	
fast_carpenter.summary.binning_config.create_one_dimension(stage_name, _in, _out=None, _bins=None, _index=None, make_bins=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binning_config.py#L34-L60]

	




	
fast_carpenter.summary.binning_config.create_weights(stage_name, weights)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binning_config.py#L84-L94]

	







          

      

      

    

  

    
      
          
            
  
fast_carpenter.summary.event_level_dataframe module


	
class fast_carpenter.summary.event_level_dataframe.Collector(filename)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/event_level_dataframe.py#L5-L42]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
collect(dataset_readers_list)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/event_level_dataframe.py#L9-L15]

	








	
class fast_carpenter.summary.event_level_dataframe.EventByEventDataframe(name, out_dir, collections, mask=None, flatten=True)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/event_level_dataframe.py#L45-L86]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Write out a pandas dataframe with event-level values


	
collector()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/event_level_dataframe.py#L74-L78]

	




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/event_level_dataframe.py#L60-L72]

	




	
merge(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/event_level_dataframe.py#L80-L86]

	











          

      

      

    

  

    
      
          
            
  
fast_carpenter.summary.import_aghast module


	
class fast_carpenter.summary.import_aghast.AghastCatcher[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/import_aghast.py#L8-L13]

	Bases: object [https://docs.python.org/3/library/functions.html#object]









          

      

      

    

  

    
      
          
            
  
fast_carpenter.summary.aghast module


	
class fast_carpenter.summary.aghast.BuildAghast(name, out_dir, binning, weights=None, dataset_col=True)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L87-L134]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Builds an aghast histogram.

Can be parametrized in the same way as
fast_carpenter.BinnedDataframe (and actually uses that stage
behind the scenes) but additionally writes out a Ghast which can be
reloaded with other ghast packages.


See also


	fast_carpenter.BinnedDataframe for a version which only
produces binned pandas dataframes.


	The aghast main page: https://github.com/scikit-hep/aghast.







	
collector()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L119-L128]

	




	
contents

	




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L130-L131]

	




	
merge(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L133-L134]

	








	
class fast_carpenter.summary.aghast.Collector(filename, axes, edges, by_dataset)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L10-L29]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
collect(dataset_readers_list)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L17-L29]

	








	
fast_carpenter.summary.aghast.bin_one_dimension(low=None, high=None, nbins=None, edges=None, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L70-L84]

	




	
fast_carpenter.summary.aghast.complete_axes(axes, df_index)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L53-L62]

	




	
fast_carpenter.summary.aghast.convert_to_counters(df)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/aghast.py#L32-L50]

	







          

      

      

    

  

    
      
          
            
  
fast_carpenter.summary.binned_dataframe module

Summarize the data by producing binned and possibly weighted counts of the data.


	
class fast_carpenter.summary.binned_dataframe.BinnedDataframe(name, out_dir, binning, weights=None, dataset_col=True, pad_missing=False, file_format=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L109-L219]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Produces a binned dataframe (a multi-dimensional histogram).

def __init__(self, name, out_dir, binning, weights=None, dataset_col=False):


	Parameters

	
	binning (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – A list of dictionaries describing the variables to
bin on, and how they should be binned.  Each of these dictionaries can
contain the following:








	Parameter

	Default

	Description





	in

	
	The name of the attribute on the event to use.



	out

	same as in

	The name of the column to be filled in the output dataframe.



	bins

	None

	
Must be either None or a dictionary.  If a dictionary,
it must contain one of the follow sets of

key-value pairs:


1. nbins, low, high: which are used to
produce a list of bin edges equivalent to:


numpy.linspace(low, high, nbins + 1)



2. edges: which is treated as the list of bin
edges directly.



If set to None, then the input variable is assumed
to already be categorical (ie. binned or discrete)












	weights (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – How to weight events in the
output table.  Must be either a single variable, a list of
variables, or a dictionary where the values are variables in the data and
keys are the column names that these weights should be called in the
output tables.


	file_format (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – determines the file format to
use to save the binned dataframe to disk.  Should be either a) a string with
the file format, b) a dict containing the keyword extension to give the file
format and then all other keyword-argument pairs are passed on to the
corresponding pandas function, or c) a list of values matching a) or b).


	dataset_col (bool [https://docs.python.org/3/library/functions.html#bool]) – adds an extra binning column with the name for each dataset.


	pad_missing (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, any bins that don’t contain data are
excluded from the stored dataframe.  Leaving this False can save
some disk-space and improve processing time, particularly if the bins are
only very sparsely filled.






	Other Parameters

	
	name (str) – The name of this stage (handled automatically by fast-flow)


	out_dir (str) – Where to put the summary table (handled automatically by
fast-flow)






	Raises

	BadBinnedDataframeConfig – If there is an issue with the binning description.






	
collector()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L178-L188]

	




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L190-L211]

	




	
merge(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L213-L219]

	








	
class fast_carpenter.summary.binned_dataframe.Collector(filename, dataset_col, binnings, file_format)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L12-L49]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
collect(dataset_readers_list, doReturn=True, writeFiles=True)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L21-L44]

	




	
valid_ext = {'dta': 'stata', 'h5': 'hdf', 'msg': 'msgpack', 'p': 'pickle', 'pkl': 'pickle', 'xlsx': 'excel'}

	








	
fast_carpenter.summary.binned_dataframe.combined_dataframes(dataset_readers_list, dataset_col, binnings=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L52-L64]

	




	
fast_carpenter.summary.binned_dataframe.densify_dataframe(in_df, binnings)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L95-L106]

	




	
fast_carpenter.summary.binned_dataframe.explode(df)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binned_dataframe.py#L268-L298]

	Based on this answer:
https://stackoverflow.com/questions/12680754/split-explode-pandas    -dataframe-string-entry-to-separate-rows/40449726#40449726









          

      

      

    

  

    
      
          
            
  
fast_carpenter.summary.binning_config module


	
exception fast_carpenter.summary.binning_config.BadBinnedDataframeConfig[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binning_config.py#L6-L7]

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]






	
fast_carpenter.summary.binning_config.bin_one_dimension(low=None, high=None, nbins=None, edges=None, overflow=True, underflow=True)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binning_config.py#L63-L81]

	




	
fast_carpenter.summary.binning_config.create_binning_list(name, bin_list, make_bins=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binning_config.py#L10-L31]

	




	
fast_carpenter.summary.binning_config.create_file_format(stage_name, file_format)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binning_config.py#L97-L110]

	




	
fast_carpenter.summary.binning_config.create_one_dimension(stage_name, _in, _out=None, _bins=None, _index=None, make_bins=None)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binning_config.py#L34-L60]

	




	
fast_carpenter.summary.binning_config.create_weights(stage_name, weights)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/binning_config.py#L84-L94]

	







          

      

      

    

  

    
      
          
            
  
fast_carpenter.summary.event_level_dataframe module


	
class fast_carpenter.summary.event_level_dataframe.Collector(filename)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/event_level_dataframe.py#L5-L42]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
collect(dataset_readers_list)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/event_level_dataframe.py#L9-L15]

	








	
class fast_carpenter.summary.event_level_dataframe.EventByEventDataframe(name, out_dir, collections, mask=None, flatten=True)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/event_level_dataframe.py#L45-L86]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Write out a pandas dataframe with event-level values


	
collector()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/event_level_dataframe.py#L74-L78]

	




	
event(chunk)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/event_level_dataframe.py#L60-L72]

	




	
merge(rhs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/event_level_dataframe.py#L80-L86]

	











          

      

      

    

  

    
      
          
            
  
fast_carpenter.summary.import_aghast module


	
class fast_carpenter.summary.import_aghast.AghastCatcher[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/summary/import_aghast.py#L8-L13]

	Bases: object [https://docs.python.org/3/library/functions.html#object]









          

      

      

    

  

    
      
          
            
  
fast_carpenter.tree_wrapper module

This has to be what is probably the hackiest piece of code I’ve ever written.
It’s very tightly coupled to uproot, and just by importing it will change the
way uproot works.  However, it allows me to achieve the functionality of adding
a branch to uproot trees with no changes to actual code in uproot and with
minimal coding on my side…


	
class fast_carpenter.tree_wrapper.WrappedTree(tree, event_ranger)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L45-L153]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
class FakeBranch(name, values, event_ranger)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L90-L121]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
array(entrystart=None, entrystop=None, blocking=True, **kws)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L102-L115]

	








	
class PandasWrap(owner)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L77-L84]

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
df(*args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L81-L84]

	








	
array(*args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L68-L70]

	




	
arrays(*args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L64-L66]

	




	
itervalues(*args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L58-L62]

	




	
new_variable(name, value)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L123-L134]

	




	
pandas

	




	
reset_cache()[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L148-L153]

	




	
update_array_args(kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L72-L75]

	








	
fast_carpenter.tree_wrapper.recursive_type_wrap(array)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L14-L17]

	




	
class fast_carpenter.tree_wrapper.wrapped_asgenobj(cls, context, skipbytes)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L20-L24]

	Bases: uproot.interp.objects.asgenobj


	
finalize(*args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L21-L24]

	








	
fast_carpenter.tree_wrapper.wrapped_interpret(branch, *args, **kwargs)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/tree_wrapper.py#L30-L39]

	







          

      

      

    

  

    
      
          
            
  
fast_carpenter.utils module


	
fast_carpenter.utils.mkdir_p(path)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/utils.py#L17-L18]

	







          

      

      

    

  

    
      
          
            
  
fast_carpenter.version module

Defines version of codebase


	
fast_carpenter.version.split_version(version)[source] [https://github.com/FAST-HEP/fast-carpenter/tree/v0.17.4/fast_carpenter/version.py#L5-L12]

	Split a semantic version string into a version_info tuple









          

      

      

    

  

    
      
          
            

   Python Module Index


   
   f
   


   
     		 	

     		
       f	

     
       	[image: -]
       	
       fast_carpenter	
       

     
       	
       	   
       fast_carpenter.backends	
       

     
       	
       	   
       fast_carpenter.backends.alphatwirl	
       

     
       	
       	   
       fast_carpenter.define	
       

     
       	
       	   
       fast_carpenter.define.reductions	
       

     
       	
       	   
       fast_carpenter.define.systematics	
       

     
       	
       	   
       fast_carpenter.define.variables	
       

     
       	
       	   
       fast_carpenter.event_builder	
       

     
       	
       	   
       fast_carpenter.expressions	
       

     
       	
       	   
       fast_carpenter.help	
       

     
       	
       	   
       fast_carpenter.masked_tree	
       

     
       	
       	   
       fast_carpenter.selection	
       

     
       	
       	   
       fast_carpenter.selection.filters	
       

     
       	
       	   
       fast_carpenter.selection.stage	
       

     
       	
       	   
       fast_carpenter.summary	
       

     
       	
       	   
       fast_carpenter.summary.aghast	
       

     
       	
       	   
       fast_carpenter.summary.binned_dataframe	
       

     
       	
       	   
       fast_carpenter.summary.binning_config	
       

     
       	
       	   
       fast_carpenter.summary.event_level_dataframe	
       

     
       	
       	   
       fast_carpenter.summary.import_aghast	
       

     
       	
       	   
       fast_carpenter.tree_wrapper	
       

     
       	
       	   
       fast_carpenter.utils	
       

     
       	
       	   
       fast_carpenter.version	
       

   



          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 


_


  	
      	__init__()


  





A


  	
      	add() (fast_carpenter.selection.filters.Counter method)


      	AghastCatcher (class in fast_carpenter.summary.import_aghast)


      	All (class in fast_carpenter.selection.filters)


      	Any (class in fast_carpenter.selection.filters)


      	apply_mask() (fast_carpenter.masked_tree.MaskedUprootTree method)


  

  	
      	array() (fast_carpenter.masked_tree.MaskedUprootTree method)

      
        	(fast_carpenter.tree_wrapper.WrappedTree method)


        	(fast_carpenter.tree_wrapper.WrappedTree.FakeBranch method)


      


      	arrays() (fast_carpenter.masked_tree.MaskedUprootTree method)

      
        	(fast_carpenter.tree_wrapper.WrappedTree method)


      


      	AtuprootContext (class in fast_carpenter.backends.alphatwirl)


  





B


  	
      	BadBinnedDataframeConfig


      	BadSystematicWeightsConfig


      	BadVariablesConfig


      	BaseFilter (class in fast_carpenter.selection.filters)


      	BEventsWrapped (class in fast_carpenter.event_builder)


      	bin_one_dimension() (in module fast_carpenter.summary.aghast)

      
        	(in module fast_carpenter.summary.binning_config)


      


  

  	
      	BinnedDataframe (class in fast_carpenter)

      
        	(class in fast_carpenter.summary)


        	(class in fast_carpenter.summary.binned_dataframe)


      


      	build_selection() (in module fast_carpenter.selection.filters)


      	BuildAghast (class in fast_carpenter)

      
        	(class in fast_carpenter.summary)


        	(class in fast_carpenter.summary.aghast)


      


  





C


  	
      	CalculationCfg (class in fast_carpenter.define.variables)


      	class_name (fast_carpenter.help.StageGuidanceHelper attribute)


      	collect() (fast_carpenter.backends.alphatwirl.DummyCollector method)

      
        	(fast_carpenter.summary.aghast.Collector method)


        	(fast_carpenter.summary.binned_dataframe.Collector method)


        	(fast_carpenter.summary.event_level_dataframe.Collector method)


      


      	Collector (class in fast_carpenter.summary.aghast)

      
        	(class in fast_carpenter.summary.binned_dataframe)


        	(class in fast_carpenter.summary.event_level_dataframe)


      


      	collector() (fast_carpenter.BinnedDataframe method)

      
        	(fast_carpenter.BuildAghast method)


        	(fast_carpenter.CutFlow method)


        	(fast_carpenter.selection.CutFlow method)


        	(fast_carpenter.selection.stage.CutFlow method)


        	(fast_carpenter.summary.BinnedDataframe method)


        	(fast_carpenter.summary.BuildAghast method)


        	(fast_carpenter.summary.EventByEventDataframe method)


        	(fast_carpenter.summary.aghast.BuildAghast method)


        	(fast_carpenter.summary.binned_dataframe.BinnedDataframe method)


        	(fast_carpenter.summary.event_level_dataframe.EventByEventDataframe method)


      


  

  	
      	columns (fast_carpenter.selection.filters.BaseFilter attribute)


      	combined_dataframes() (in module fast_carpenter.summary.binned_dataframe)


      	complete_axes() (in module fast_carpenter.summary.aghast)


      	contents (fast_carpenter.BuildAghast attribute)

      
        	(fast_carpenter.summary.BuildAghast attribute)


        	(fast_carpenter.summary.aghast.BuildAghast attribute)


      


      	convert_to_counters() (in module fast_carpenter.summary.aghast)


      	Counter (class in fast_carpenter.selection.filters)


      	counts (fast_carpenter.selection.filters.Counter attribute)


      	create_binning_list() (in module fast_carpenter.summary.binning_config)


      	create_file_format() (in module fast_carpenter.summary.binning_config)


      	create_one_dimension() (in module fast_carpenter.summary.binning_config)


      	create_weights() (in module fast_carpenter.summary.binning_config)


      	cut-flow


      	CutFlow (class in fast_carpenter)

      
        	(class in fast_carpenter.selection)


        	(class in fast_carpenter.selection.stage)


      


  





D


  	
      	data-space


      	dataframe


      	dataset config


      	Define (class in fast_carpenter)

      
        	(class in fast_carpenter.define)


        	(class in fast_carpenter.define.variables)


      


  

  	
      	DefinePandas (class in fast_carpenter.define.variables)


      	densify_dataframe() (in module fast_carpenter.summary.binned_dataframe)


      	df() (fast_carpenter.masked_tree.MaskedUprootTree.PandasWrap method)

      
        	(fast_carpenter.tree_wrapper.WrappedTree.PandasWrap method)


      


      	docstring() (fast_carpenter.help.StageGuidanceHelper method)


      	DummyCollector (class in fast_carpenter.backends.alphatwirl)


  





E


  	
      	entries_in_block (fast_carpenter.event_builder.EventRanger attribute)


      	evaluate() (in module fast_carpenter.expressions)


      	event()

      
        	(fast_carpenter.BinnedDataframe method)


        	(fast_carpenter.BuildAghast method)


        	(fast_carpenter.CutFlow method)


        	(fast_carpenter.Define method)


        	(fast_carpenter.SelectPhaseSpace method)


        	(fast_carpenter.SystematicWeights method)


        	(fast_carpenter.define.Define method)


        	(fast_carpenter.define.SystematicWeights method)


        	(fast_carpenter.define.systematics.SystematicWeights method)


        	(fast_carpenter.define.variables.Define method)


        	(fast_carpenter.define.variables.DefinePandas method)


        	(fast_carpenter.selection.CutFlow method)


        	(fast_carpenter.selection.SelectPhaseSpace method)


        	(fast_carpenter.selection.stage.CutFlow method)


        	(fast_carpenter.selection.stage.SelectPhaseSpace method)


        	(fast_carpenter.summary.BinnedDataframe method)


        	(fast_carpenter.summary.BuildAghast method)


        	(fast_carpenter.summary.EventByEventDataframe method)


        	(fast_carpenter.summary.aghast.BuildAghast method)


        	(fast_carpenter.summary.binned_dataframe.BinnedDataframe method)


        	(fast_carpenter.summary.event_level_dataframe.EventByEventDataframe method)


      


  

  	
      	EventBuilder (class in fast_carpenter.event_builder)


      	EventByEventDataframe (class in fast_carpenter.summary)

      
        	(class in fast_carpenter.summary.event_level_dataframe)


      


      	EventRanger (class in fast_carpenter.event_builder)


      	execute() (in module fast_carpenter.backends.alphatwirl)


      	explode() (in module fast_carpenter.summary.binned_dataframe)


      	expression

      
        	(fast_carpenter.define.variables.CalculationCfg attribute)


      


  





F


  	
      	fast_carpenter (module)


      	fast_carpenter.backends (module)


      	fast_carpenter.backends.alphatwirl (module)


      	fast_carpenter.define (module)


      	fast_carpenter.define.reductions (module)


      	fast_carpenter.define.systematics (module)


      	fast_carpenter.define.variables (module)


      	fast_carpenter.event_builder (module)


      	fast_carpenter.expressions (module)


      	fast_carpenter.help (module)


      	fast_carpenter.masked_tree (module)


      	fast_carpenter.selection (module)


      	fast_carpenter.selection.filters (module)


  

  	
      	fast_carpenter.selection.stage (module)


      	fast_carpenter.summary (module)


      	fast_carpenter.summary.aghast (module)


      	fast_carpenter.summary.binned_dataframe (module)


      	fast_carpenter.summary.binning_config (module)


      	fast_carpenter.summary.event_level_dataframe (module)


      	fast_carpenter.summary.import_aghast (module)


      	fast_carpenter.tree_wrapper (module)


      	fast_carpenter.utils (module)


      	fast_carpenter.version (module)


      	fill_missing (fast_carpenter.define.variables.CalculationCfg attribute)


      	finalize() (fast_carpenter.tree_wrapper.wrapped_asgenobj method)


      	format_signature() (in module fast_carpenter.help)


      	full_evaluate() (in module fast_carpenter.define.variables)


  





G


  	
      	get_alphatwirl() (in module fast_carpenter.backends)


      	get_backend() (in module fast_carpenter.backends)


      	get_branches() (in module fast_carpenter.expressions)


      	get_coffea() (in module fast_carpenter.backends)


  

  	
      	get_pandas_reduction() (in module fast_carpenter.define.reductions)


      	get_signature() (in module fast_carpenter.help)


      	get_unweighted_increment() (fast_carpenter.selection.filters.Counter static method)


      	get_weighted_increment() (fast_carpenter.selection.filters.Counter static method)


  





H


  	
      	handle_config() (in module fast_carpenter.selection.filters)


  

  	
      	help_stages() (in module fast_carpenter.help)


  





I


  	
      	increment() (fast_carpenter.selection.filters.Counter method)


      	increment_counters() (fast_carpenter.selection.filters.BaseFilter method)


  

  	
      	index_values (fast_carpenter.selection.filters.BaseFilter attribute)


      	itervalues() (fast_carpenter.tree_wrapper.WrappedTree method)


  





J


  	
      	jagged array


  





M


  	
      	mask (fast_carpenter.define.variables.CalculationCfg attribute)

      
        	(fast_carpenter.masked_tree.MaskedUprootTree attribute)


      


      	mask_df() (in module fast_carpenter.masked_tree)


      	MaskedUprootTree (class in fast_carpenter.masked_tree)


      	MaskedUprootTree.PandasWrap (class in fast_carpenter.masked_tree)


      	matches() (fast_carpenter.help.StageGuidanceHelper method)


      	merge() (fast_carpenter.BinnedDataframe method)

      
        	(fast_carpenter.BuildAghast method)


        	(fast_carpenter.CutFlow method)


        	(fast_carpenter.selection.CutFlow method)


        	(fast_carpenter.selection.filters.BaseFilter method)


        	(fast_carpenter.selection.stage.CutFlow method)


        	(fast_carpenter.summary.BinnedDataframe method)


        	(fast_carpenter.summary.BuildAghast method)


        	(fast_carpenter.summary.EventByEventDataframe method)


        	(fast_carpenter.summary.aghast.BuildAghast method)


        	(fast_carpenter.summary.binned_dataframe.BinnedDataframe method)


        	(fast_carpenter.summary.event_level_dataframe.EventByEventDataframe method)


      


  

  	
      	mkdir_p() (in module fast_carpenter.utils)


  





N


  	
      	name (fast_carpenter.define.variables.CalculationCfg attribute)


  

  	
      	new_variable() (fast_carpenter.tree_wrapper.WrappedTree method)


  





O


  	
      	OuterCounterIncrementer (class in fast_carpenter.selection.filters)


  





P


  	
      	pandas (fast_carpenter.masked_tree.MaskedUprootTree attribute)

      
        	(fast_carpenter.tree_wrapper.WrappedTree attribute)


      


  

  	
      	parameters() (fast_carpenter.help.StageGuidanceHelper method)


      	processing config


      	processing stage


  





R


  	
      	recursive_type_wrap() (in module fast_carpenter.tree_wrapper)


      	ReduceSingleCut (class in fast_carpenter.selection.filters)


  

  	
      	reduction (fast_carpenter.define.variables.CalculationCfg attribute)


      	reset_cache() (fast_carpenter.tree_wrapper.WrappedTree method)


      	reset_mask() (fast_carpenter.masked_tree.MaskedUprootTree method)


  





S


  	
      	safe_and() (in module fast_carpenter.selection.filters)


      	safe_or() (in module fast_carpenter.selection.filters)


      	SelectPhaseSpace (class in fast_carpenter)

      
        	(class in fast_carpenter.selection)


        	(class in fast_carpenter.selection.stage)


      


      	set_owner() (fast_carpenter.event_builder.EventRanger method)


      	SingleCut (class in fast_carpenter.selection.filters)


  

  	
      	split_version() (in module fast_carpenter.version)


      	stage (fast_carpenter.help.StageGuidanceHelper attribute)


      	StageGuidanceHelper (class in fast_carpenter.help)


      	start_entry (fast_carpenter.event_builder.EventRanger attribute)


      	stop_entry (fast_carpenter.event_builder.EventRanger attribute)


      	SystematicWeights (class in fast_carpenter)

      
        	(class in fast_carpenter.define)


        	(class in fast_carpenter.define.systematics)


      


  





T


  	
      	to_dataframe() (fast_carpenter.selection.filters.BaseFilter method)


  





U


  	
      	unmasked_array() (fast_carpenter.masked_tree.MaskedUprootTree method)


  

  	
      	unmasked_arrays() (fast_carpenter.masked_tree.MaskedUprootTree method)


      	update_array_args() (fast_carpenter.tree_wrapper.WrappedTree method)


  





V


  	
      	valid_ext (fast_carpenter.summary.binned_dataframe.Collector attribute)


  

  	
      	values (fast_carpenter.selection.filters.BaseFilter attribute)


  





W


  	
      	wrapped_asgenobj (class in fast_carpenter.tree_wrapper)


      	wrapped_interpret() (in module fast_carpenter.tree_wrapper)


  

  	
      	WrappedTree (class in fast_carpenter.tree_wrapper)


      	WrappedTree.FakeBranch (class in fast_carpenter.tree_wrapper)


      	WrappedTree.PandasWrap (class in fast_carpenter.tree_wrapper)


  







          

      

      

    

  _images/fast-carpenter-black.png
)
A G

wicarpenter





_static/ajax-loader.gif





_static/comment-bright.png





_static/comment-close.png





_static/comment.png





nav.xhtml

    
      Table of Contents


      
        		
          Indices and tables
        


        		
          Installing
          
            		
              From Pypi
            


            		
              From Source
            


          


        


        		
          Key Concepts
          
            		
              Goals of fast-carpenter
              
                		
                  From the user’s perspective
                


                		
                  From the code and development perspective
                


              


            


            		
              Overall approach for data-processing
              
                		
                  Step 1: Create dataset configs
                


                		
                  Step 2: Write a processing config
                


                		
                  Step 3: Run fast_carpenter
                


                		
                  Step 4: Produce plots
                


              


            


          


        


        		
          Command-line Usage
          
            		
              fast_curator
            


            		
              fast_curator_check
            


            		
              fast_carpenter
            


            		
              fast_plotter
            


          


        


        		
          The Processing Config
          
            		
              Anatomy of the config
            


            		
              Built-in Stages
            


            		
              Used-defined Stages
            


          


        


        		
          Example repositories
          
            		
              Related Presentations
            


          


        


        		
          Glossary
        


        		
          fast_carpenter package
          
            		
              Subpackages
              
                		
                  fast_carpenter.backends package
                


                		
                  fast_carpenter.define package
                


                		
                  fast_carpenter.selection package
                


                		
                  fast_carpenter.summary package
                


              


            


            		
              Submodules
              
                		
                  fast_carpenter.event_builder module
                


                		
                  fast_carpenter.expressions module
                


                		
                  fast_carpenter.help module
                


                		
                  fast_carpenter.masked_tree module
                


                		
                  fast_carpenter.tree_wrapper module
                


                		
                  fast_carpenter.utils module
                


                		
                  fast_carpenter.version module
                


              


            


          


        


        		
          fast_carpenter.backends package
          
            		
              Submodules
              
                		
                  fast_carpenter.backends.alphatwirl module
                


                		
                  fast_carpenter.backends.coffea module
                


              


            


          


        


        		
          fast_carpenter.backends.alphatwirl module
        


        		
          fast_carpenter.backends.coffea module
        


        		
          fast_carpenter.define package
          
            		
              Submodules
              
                		
                  fast_carpenter.define.reductions module
                


                		
                  fast_carpenter.define.systematics module
                


                		
                  fast_carpenter.define.variables module
                


              


            


          


        


        		
          fast_carpenter.define.reductions module
        


        		
          fast_carpenter.define.systematics module
        


        		
          fast_carpenter.define.variables module
        


        		
          fast_carpenter.event_builder module
        


        		
          fast_carpenter.expressions module
        


        		
          fast_carpenter.help module
        


        		
          fast_carpenter.masked_tree module
        


        		
          fast_carpenter.selection package
          
            		
              Submodules
              
                		
                  fast_carpenter.selection.filters module
                


                		
                  fast_carpenter.selection.stage module
                


              


            


          


        


        		
          fast_carpenter.selection.filters module
        


        		
          fast_carpenter.selection.stage module
        


        		
          fast_carpenter.summary package
          
            		
              Submodules
              
                		
                  fast_carpenter.summary.aghast module
                


                		
                  fast_carpenter.summary.binned_dataframe module
                


                		
                  fast_carpenter.summary.binning_config module
                


                		
                  fast_carpenter.summary.event_level_dataframe module
                


                		
                  fast_carpenter.summary.import_aghast module
                


              


            


          


        


        		
          fast_carpenter.summary.aghast module
        


        		
          fast_carpenter.summary.binned_dataframe module
        


        		
          fast_carpenter.summary.binning_config module
        


        		
          fast_carpenter.summary.event_level_dataframe module
        


        		
          fast_carpenter.summary.import_aghast module
        


        		
          fast_carpenter.tree_wrapper module
        


        		
          fast_carpenter.utils module
        


        		
          fast_carpenter.version module
        


      


    
  

_static/down.png





_static/down-pressed.png





_static/plus.png





_static/file.png





_static/minus.png





_static/up-pressed.png





_static/up.png





