
fast-carpenter Documentation
Release 0.17.4

[’Ben Krikler’]

Mar 12, 2020

Contents:

1 From Pypi 3

2 From Source 5

3 Key Concepts 7
3.1 Goals of fast-carpenter . 7

3.1.1 From the user’s perspective . 7
3.1.2 From the code and development perspective . 7

3.2 Overall approach for data-processing . 8
3.2.1 Step 1: Create dataset configs . 8
3.2.2 Step 2: Write a processing config . 8
3.2.3 Step 3: Run fast_carpenter . 8
3.2.4 Step 4: Produce plots . 8

4 Command-line Usage 9
4.1 fast_curator . 9
4.2 fast_curator_check . 10
4.3 fast_carpenter . 11
4.4 fast_plotter . 12

5 The Processing Config 13
5.1 Anatomy of the config . 14
5.2 Built-in Stages . 14
5.3 Used-defined Stages . 15

6 Example repositories 17
6.1 Related Presentations . 17

7 Glossary 19

8 fast_carpenter package 21
8.1 Subpackages . 26

8.1.1 fast_carpenter.backends package . 26
8.1.2 fast_carpenter.define package . 27
8.1.3 fast_carpenter.selection package . 31
8.1.4 fast_carpenter.summary package . 36

8.2 Submodules . 41

i

8.2.1 fast_carpenter.event_builder module . 41
8.2.2 fast_carpenter.expressions module . 42
8.2.3 fast_carpenter.help module . 42
8.2.4 fast_carpenter.masked_tree module . 42
8.2.5 fast_carpenter.tree_wrapper module . 43
8.2.6 fast_carpenter.utils module . 43
8.2.7 fast_carpenter.version module . 43

9 Indices and tables 45

Python Module Index 47

Index 49

ii

fast-carpenter Documentation, Release 0.17.4

Turns your trees into tables (ie. reads ROOT TTrees, writes summary Pandas DataFrames)

fast-carpenter can:

• Be controlled using YAML-based config files

• Define new variables

• Cut out events or define phase-space “regions”

• Produce histograms stored as CSV files using multiple weighting schemes

• Make use of user-defined stages to manipulate the data

Powered by:

• AlphaTwirl (presently): to run the dataset splitting

• Atuproot: to adapt AlphaTwirl to use uproot

• uproot: to load ROOT Trees into memory as numpy arrays

• fast-flow: to manage the processing config files

• fast-curator: to orchestrate the lists of datasets to be processed

• Espresso: to keep the developer(s) writing code

A tool from the Faster Analysis Software Taskforce: http://fast-hep.web.cern.ch/

Contents: 1

https://pypi.org/project/fast-carpenter/
https://travis-ci.com/FAST-HEP/fast-carpenter
https://codecov.io/gh/FAST-HEP/fast-carpenter
https://fast-carpenter.readthedocs.io/en/latest/?badge=latest
https://gitter.im/FAST-HEP/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge
https://zenodo.org/badge/latestdoi/187055992
https://github.com/fast-hep/fast-carpenter
http://fast-hep.web.cern.ch/

fast-carpenter Documentation, Release 0.17.4

2 Contents:

CHAPTER 1

From Pypi

The simplest way to install things is from pypi.

pip install fast-carpenter

Note: In general it’s better to install this in a specific environment (e.g. using virtualenv or better still conda).

Otherwise you might need to use the --prefix or --user options for pip install. If you do provide any of
these options, make sure you have the /bin directory in your PATH (e.g. if you used --user this will be mean you
need ~/.local/bin included in the PATH). Using virtaulenv or conda will avoid this complication

3

https://virtualenv.pypa.io/en/stable/
https://docs.conda.io/en/latest/miniconda.html

fast-carpenter Documentation, Release 0.17.4

4 Chapter 1. From Pypi

CHAPTER 2

From Source

If you want to edit the code or contribute something back, you might want to install things directly from github. Any
of these options should work:

Directly with pip:

pip install -e 'git+https://github.com/FAST-HEP/fast-carpenter.git#egg=fast_carpenter
→˓' --src .

Clone first and install:

git clone https://github.com/FAST-HEP/fast-carpenter.git
cd fast-carpenter
python setup.py develop

5

fast-carpenter Documentation, Release 0.17.4

6 Chapter 2. From Source

CHAPTER 3

Key Concepts

3.1 Goals of fast-carpenter

3.1.1 From the user’s perspective

fast-carpenter’s principal goal is to help a user ask “what do I want to see” as opposed to “how do I implement this”
which has been the more traditional way of thinking for a particle physics analyst.

In that sense, most of the control of this code is “declarative” in the sense that a user should typically not have to say
how to move data through the analysis, only what they want it to do. That way fast-carpenter can make decisions
behind the scenes as to how to handle this. Python dictionaries are therefore the main way to configure carpenter,
which we describe using YAML.

The net result of this should mean:

• What the user writes is closer to the actual mathematical description of what they want to do.

• There is less actual analysis “code” and so less opportunity to put bugs in the analysis.

• It should be quick to do a simple study, and then scale smoothly to a full-blown analysis.

• Python dictionaries can be built easily in other tools, and so fast-carpenter directly called from inside a
Jupyter notebook, for example.

• When you want to do something more exotic, which is not (yet) catered for in fast-carpenter itself, there is
an easy “plugin” style system to add your own custom code into the processing.

Although fast-carpenter is focussed on input ROOT trees at this point (which inspires its name), this may well evolve
in the future.

3.1.2 From the code and development perspective

• We have tried to make the code as modular as possible (hence fast-flow and fast-curator not being contained in
this package).

• Wherever possible, we’ve tried to avoid writing code; if an existing package does that task, use it.

7

https://en.wikipedia.org/wiki/YAML

fast-carpenter Documentation, Release 0.17.4

• If another tool provides most but not all of a wanted functionality, we prefer contributing to that package over
putting code in here.

• Keep functions simple (e.g. under the mccabe metrics).

• Unit-tests should be clear, and are as important as documentation; ideally the two can serve a similar purpose.

3.2 Overall approach for data-processing

fast-carpenter is intended to be the first step in the main analysis pipeline. It is expected to be the only part of the
processing chain which sees “event-level” data, and produces the necessary summary of this in a tabular form (which
invariably means binned as histograms). Subsequent steps can then manipulate these to produce final analysis results,
such as graphical figures, or doing some functional fit to the binned data.

For public examples of working with fast-carpenter and the other FAST tools, see Example repositories.

3.2.1 Step 1: Create dataset configs

fast-carpenter needs to know what input files to use, and will often need extra metadata (for example, does this
data represent real or simulated data). This is where the fast-curator package comes in. It provides the fast_curator
command which we use to generate descriptions of the input files in a format that is both human and machine readable,
using YAML. These can then be put in a repository and updated periodically with extra meta-data, or when new data
becomes available.

See the fast_curator section of the command lines tools for in-depth discussion of the fast_curator command which
can automate the process of making these configs.

3.2.2 Step 2: Write a processing config

The next step is to prepare the “processing configuration” which defines what you want to do with this data. This has
to be written by hand, and is the core of what you want to spend time on as an analyzer. Behind the scenes, this config
file is interpreted using the small fast-flow package; documentation there might also be of interest.

For details about how to write this config file, see The Processing Config.

3.2.3 Step 3: Run fast_carpenter

You can now run the fast_carpenter command, giving it the dataset and processing configurations from the previous
steps. Depending on how many files you have and what type of computing resources (e.g. multiple cpus, batch
systems) you might want to use some of the different processing modes.

For more on how to use the fast_carpenter command, see the fast_carpenter section of the command line tools.

3.2.4 Step 4: Produce plots

In order to visualise the results of running fast_carpenter, you can use the fast-plotter package, which
gives you both a command-line interface and helper python functions to produce plots from the dataframes. Fine
tuning of the command-line plots is again possible using a YAML configuration file.

See the dedicated fast-plotter documentation for more guidance on this package.

8 Chapter 3. Key Concepts

https://github.com/FAST-HEP/fast-curator
https://en.wikipedia.org/wiki/YAML
https://gitlab.cern.ch/fast-hep/public/fast-flow
http://fast-plotter.readthedocs.io/

CHAPTER 4

Command-line Usage

The command-line tools are the primary way to use fast-carpenter and friends at this point. All of the FAST commands
provide built-in help by providing the --help option.

4.1 fast_curator

The fast-curator package handles the description of the input datasets. These are saved as YAML files, which contain
a dictionary that lists the different datasets, the list of files for each dataset, and additional meta-data.

You can build these files semi-automatically by using the fast_curator command. This can be called once per
dataset and given a wildcarded expression for the input files of this dataset, which it will then expand, build some
simple summary meta-data (number of events, number of files, etc) and write this to an output YAML file. If the
output file already exists, and is a valid fast-curator description, the new information will be appended to the existing
file.

Input ROOT files can also be stored on xrootd servers, with a file-path specified by the root:// protocol. You
can also provide wild-cards for such files, but make sure to check that you pick all files that you expect; wildcarded
searches on xrootd directories can depend on permissions, access rights, storage mirroring and so on.

For an in-depth description of the dataset description files, see the fast-curator pages.

$ fast_curator --help
usage: fast_curator [-h] -d DATASET [-o OUTPUT] [--mc] [--data] [-t TREE_NAME]

[-u USER] [-q QUERY_TYPE] [--no-empty-files]
[--allow-missing-tree]
[--ignore-inaccessible IGNORE_INACCESSIBLE] [-p PREFIX]
[--no-defaults-in-output] [--version] [-m META]
[files [files ...]]

positional arguments:
files

optional arguments:

(continues on next page)

9

https://en.wikipedia.org/wiki/YAML
https://github.com/FAST-HEP/fast-curator

fast-carpenter Documentation, Release 0.17.4

(continued from previous page)

-h, --help show this help message and exit
-d DATASET, --dataset DATASET

Which dataset to associate these files to
-o OUTPUT, --output OUTPUT

Name of output file list
--mc Specify if this dataset contains simulated data
--data Specify if this dataset contains real data
-t TREE_NAME, --tree-name TREE_NAME

Provide the name of the tree in the input files to
calculate number of events, etc

-u USER, --user USER Add a user function to extend the dataset dictionary,
eg. my_package.my_module.some_function

-q QUERY_TYPE, --query-type QUERY_TYPE
How to interpret file arguments to this command.
Allows the use of experiment-specific file catalogues
or wild-carded file paths. Known query types are:
xrootd, local

--no-empty-files Don't include files that contain no events
--allow-missing-tree Allow files that don't contain the named tree in
--ignore-inaccessible IGNORE_INACCESSIBLE

Don't include files that can't be opened
-p PREFIX, --prefix PREFIX

Provide a common prefix to files, useful for
supporting multiple sites

--no-defaults-in-output
Explicitly list all settings for each dataset in
output file instead of grouping them in default block

--version show program's version number and exit
-m META, --meta META Add other metadata (eg cross-section, run era) for

this dataset. Must take the form of 'key=value'

4.2 fast_curator_check

Sometimes it can be useful to check that you’re dataset config files are valid, in particular if you use the import
section (which allows you to include dataset configs from another file). The fast_curator_check command can
help you by expanding such sections and dumping the result to screen or to an output file.

$ fast_curator_check --help
usage: fast_curator_check [-h] [-o OUTPUT] [-f FIELDS] [-p PREFIX]

files [files ...]

positional arguments:
files

optional arguments:
-h, --help show this help message and exit
-o OUTPUT, --output OUTPUT

Name of output file list to expand things to
-f FIELDS, --fields FIELDS

Comma-separated list of fields to dump for each
dataset

-p PREFIX, --prefix PREFIX
Choose one of the file prefixes to use

10 Chapter 4. Command-line Usage

fast-carpenter Documentation, Release 0.17.4

4.3 fast_carpenter

The fast_carpenter is the star of the show. It is what actually converts your event-level datasets to the binned
summaries.

The built-in help should tell you everything you need to know:

$ fast_carpenter --help
usage: fast_carpenter [-h] [--outdir OUTDIR] [--mode MODE] [--ncores NCORES]

[--nblocks-per-dataset NBLOCKS_PER_DATASET]
[--nblocks-per-sample NBLOCKS_PER_SAMPLE]
[--blocksize BLOCKSIZE] [--quiet] [--profile]
[--help-stages [stage-name-regex]]
[--help-stages-full stage] [-v]
dataset_cfg sequence_cfg

Chop up those trees into nice little tables and dataframes

positional arguments:
dataset_cfg Dataset config to run over
sequence_cfg Config for how to process events

optional arguments:
-h, --help show this help message and exit
--outdir OUTDIR Where to save the results
--mode MODE Which mode to run in (multiprocessing, htcondor, sge)
--ncores NCORES Number of cores to run on
--nblocks-per-dataset NBLOCKS_PER_DATASET

Number of blocks per dataset
--nblocks-per-sample NBLOCKS_PER_SAMPLE

Number of blocks per sample
--blocksize BLOCKSIZE

Number of events per block
--quiet Keep progress report quiet
--profile Profile the code
--help-stages [stage-name-regex]

Print help specific to the available stages
--help-stages-full stage

Print the full help specific to the available stages
-v, --version show program's version number and exit

In its simplest form therefore, you can just provide a dataset config and a processing config and run:

fast_carpenter datasets.yml processing.yml

Quite often you will want to use some of the acceleration options which allow you to process the jobs more quickly
using multiple cpu cores, or by running things on a batch system. When you do this, the fast_carpenter com-
mand will submit tasks to the batch system and wait for them to finish, so you need to make sure the command is not
killed in between e.g. by running fast-carpenter on a remote login node and breaking or losing the connection to that
login. Use a tool tmux or screen in such cases.

To use multiple CPUs on the local machine, use --mode multiprocessing (this is the default, so not generally
needed) and specify the number of cores to use, --ncores 4.

fast_carpenter --ncores 4 datasets.yml processing.yml

Alternatively, if you have access to an htcondor or SGE batch system (i.e. qsub), then the fast_carpenter
command can submit many tasks to un at the same time using the batch system. In this case you need to choose an

4.3. fast_carpenter 11

fast-carpenter Documentation, Release 0.17.4

appropriate option for the --mode option. In addition the options with block in them can control how many events
are processed on each task and for each dataset.

Note: For all modes, the --blocksize option can be helpful to present fast-carpenter reading too many events
into memory in one go. It’s default value of 100,000 might be too large, in which case reducing it to some other value
(e.g. 20,000) can help. Common symptons of the blocksize being too large are:

• Extremely slow processing, or

• Batch jobs crashing or not being started

4.4 fast_plotter

Once you have produced your binned dataframes, the next thing you’ll likely want to do is to make these into figures.
The fast_plotter command and library can help with this. Its command-line interface gives a simple way to
make plots from the dataframes with reasonable defaults, whereas its internal functions can be useful when needing
more specific ways or presenting results.

Command ’fast_plotter –help’ failed: [Errno 2] No such file or directory: ’fast_plotter’: ’fast_plotter’

See also:

See the dedicated fast-plotter documentation for more guidance on this package.

12 Chapter 4. Command-line Usage

http://fast-plotter.readthedocs.io/

CHAPTER 5

The Processing Config

The processing config file tells fast-carpenter what to do with your data and is written in YAML.

An example config file looks like:

1 stages:
2 - jet_cleaning: fast_carpenter.Define
3 - event_selection: fast_carpenter.CutFlow
4 - histogram: fast_carpenter.BinnedDataframe
5

6 jet_cleaning:
7 variables:
8 - BtaggedJets: Jet_bScore > 0.9
9 - nBJets: {reduce: count, formula: BtaggedJets}

10

11 event_selection:
12 selection:
13 All:
14 - nElectron == 0
15 - nJet > 1
16 - {reduce: 0, formula: Jet_pt > 100}
17 - Any:
18 - HT >= 200
19 - MHT >= 200
20

21 histogram:
22 binning:
23 - {in: nJet}
24 - {in: nBJets}
25 - {in: MET, out: met, bins: {edges: [0, 200, 400, 700, 1000]}
26 weights: weight_nominal

Other, more complete examples are listed in Example repositories.

Tip: Since this is a YAML file, things like anchors and block syntax are totally valid, which can be helpful to define
“aliases” or reuse certain parts of a config. For more guidance on YAML, this is a good overview of the concepts and

13

https://en.wikipedia.org/wiki/YAML

fast-carpenter Documentation, Release 0.17.4

syntax: https://kapeli.com/cheat_sheets/YAML.docset/Contents/Resources/Documents/index.

5.1 Anatomy of the config

The stages section This is the most important section of the config because it defines what steps to take
with the data. It uses a list of single-length dictionaries, whose key is the name for the stage (e.g.
histogram) and whose values is the python-importable class that implements it (e.g. fast_carpenter.
BinnedDataframes). The following sections discuss what are valid stage classes. Lines 1 to 4 of the config
above show an example of this section and others can be found in the linked Example repositories.

Stage configuration sections Each stage must be given a complete description by adding a top-level section in the
yaml file with the same name provided in the stages section. This should then contain a dictionary which
will be passed as keyword-arguments to the underlying class’ init method. Lines 22 to 26 of the above example
config file show how the stage called histogram is configured. See below for more help on configuring
specific stages.

Importing other config files Sometimes it can be helpful to re-use one config in another, for example, defining a list
of common variables and event selections, but then changing the BinnedDataframes that are produced. The
processing config supports this by using the reserved word IMPORT as the key for a stage, followed by the path
to the config file to import. If the path starts with {this_dir} then the imported file will be located relative
to the directory of the importing config file.

For example:

- IMPORT: "{this_dir}/another_processing_config.yml"

See also:

The interpretation of the processing config is handled by the fast-flow package so its documentation can also be helpful
to understanding the basic anatomy and handling.

5.2 Built-in Stages

The list of stages known to fast_carpenter already can be found using the built-in --help-stages option.

$ fast_carpenter --help-stages
fast_carpenter.Define

config: variables
purpose: Creates new variables using a string-based expression.

fast_carpenter.SystematicWeights
config: weights, out_format=weight_{}, extra_variations=[]
purpose: Combines multiple weights and variations to produce a single event weight

fast_carpenter.CutFlow
config: selection_file=None, keep_unique_id=False, selection=None, counter=True,

→˓weights=None
purpose: Prevents subsequent stages seeing certain events.

fast_carpenter.SelectPhaseSpace
config: region_name, **kwargs
purpose: Creates an event-mask and adds it to the data-space.

(continues on next page)

14 Chapter 5. The Processing Config

https://kapeli.com/cheat_sheets/YAML.docset/Contents/Resources/Documents/index
https://gitlab.cern.ch/fast-hep/public/fast-flow

fast-carpenter Documentation, Release 0.17.4

(continued from previous page)

fast_carpenter.BinnedDataframe
config: binning, weights=None, dataset_col=True, pad_missing=False, file_

→˓format=None
purpose: Produces a binned dataframe (a multi-dimensional histogram).

fast_carpenter.BuildAghast
config: binning, weights=None, dataset_col=True
purpose: Builds an aghast histogram.

fast_carpenter.EventByEventDataframe
config: collections, mask=None, flatten=True
purpose: Write out a pandas dataframe with event-level values

Further guidance on the built-in stages can be found using --help-stages-full and giving the name of the
stage. All the built-in stages of fast_carpenter are available directly from the fast_carpenter module, e.g.
fast_carpenter.Define.

See also:

In-depth discussion of the built-in stages and their configuration can be found on the fast_carpenter module
page: fast_carpenter, or directly at:

• fast_carpenter.Define

• fast_carpenter.SystematicWeights

• fast_carpenter.CutFlow

• fast_carpenter.SelectPhaseSpace

• fast_carpenter.BinnedDataframe

• fast_carpenter.BuildAghast

Todo: Build that list programmatically, so its always up to date and uses the built-in docstrings for a description.

5.3 Used-defined Stages

fast-carpenter is still evolving, and so it is natural that many analysis tasks cannot be implemented using the existing
stages. In this case, it is possible to implement your own stage and making sure it can be imported by python (e.g.
by setting the PYTHONPATH variable to point to the directory containing its code). The class implementing a custom
stage should provide the following methods:

__init__(name, out_dir, ...)
This is the method that will receive configuration from the config file, creating the stage itself.

Parameters

• name (str) – will contain the name of the stage as given in the config file.

• out_dir (path) – receives the path to the output directory that should be used if the stage
produces output.

Additional arguments can be added, which will be configurable from the processing config file.

event(chunk)
Called once for each chunk of data.

5.3. Used-defined Stages 15

https://docs.python.org/3/library/stdtypes.html#str

fast-carpenter Documentation, Release 0.17.4

Parameters chunk – provides access to the dataset configuration (chunk.config) and the cur-
rent data-space (chunk.tree). Typically one wants an array, or set of arrays representing the
data for each event, in which case these can be obtained using:

jet_pt = chunk.tree.array("jet_pt")
jet_pt, jet_eta = chunk.tree.arrays(["jet_pt", "jet_eta",
→˓outputtype=tuple)

If your stage produces a new variable, which you want other stages to be able to see, then use
the new_variable method:

chunk.tree.new_variable("number_good_jets", number_good_jets)

For more details on working with chunk.tree, see fast_carpenter.masked_tree.
MaskedUprootTree.

Returns True or False for whether to continue processing the chunk through subsequent stages.

Return type bool

See also:

An example of such a user stage can be seen in the cms_public_tutorial demo repository: https://gitlab.cern.ch/
fast-hep/public/fast_cms_public_tutorial/blob/master/cms_hep_tutorial/__init__.py

Warning: Make sure that your stage can be imported by python, most likely by setting the PYTHONPATH variable
to point to the containing directory. Then to check a stage called AddMyFancyVar and defined in a module called
my_custom_module can be imported, make sure no errors are raised by doing:

python -c "import my_custom_module.AddMyFancyVar"

Todo: Describe the collector and merge methods to allow a user stage to save results to disk.

16 Chapter 5. The Processing Config

https://docs.python.org/3/library/functions.html#bool
https://gitlab.cern.ch/fast-hep/public/fast_cms_public_tutorial/blob/master/cms_hep_tutorial/__init__.py
https://gitlab.cern.ch/fast-hep/public/fast_cms_public_tutorial/blob/master/cms_hep_tutorial/__init__.py

CHAPTER 6

Example repositories

• A full demo based on the public CMS tutorial using 2012 data: https://github.com/FAST-HEP/fast_cms_public_
tutorial

6.1 Related Presentations

1. IRIS-HEP, 4th March 2019: https://indico.cern.ch/event/802182/contributions/3334624/

2. Analysis Descrition Languages for the LHC, 7th May 2019: https://indico.cern.ch/event/769263/contributions/
3406084/

17

https://github.com/FAST-HEP/fast_cms_public_tutorial
https://github.com/FAST-HEP/fast_cms_public_tutorial
https://indico.cern.ch/event/802182/contributions/3334624/
https://indico.cern.ch/event/769263/contributions/3406084/
https://indico.cern.ch/event/769263/contributions/3406084/

fast-carpenter Documentation, Release 0.17.4

18 Chapter 6. Example repositories

CHAPTER 7

Glossary

cut-flow A series of “cuts” which remove events from the processing.

data-space The current set of variables known to fast-carpenter and passed between stages. Stages can modify the
data-space which will affect what subequent stages see. Before any stages have been run, the data-space contains
only those variables given in the input datasets.

processing config A YAML-based description of the way the input data should be processed.

processing stage A single step in the processing chain, which can modify the data-space or produce new outputs.

dataset config A YAML-based description of the input files which form the datasets to be processed.

expression A string representing some mathematical manipulation of variables in the data-space.

dataframe A programmatic interface to a table-like representation of data. In the context of fast-carpenter,
“dataframe” will usually refer to the pandas.DataFrame implementation.

jagged array A generalisation of a multi-dimensional numpy array where the length of each sub-array in the second
(and third, and fourth, and so on) dimension can vary. For example, if each event contains a list of particles
produced in that event, this would be represented by a jagged array, since there can be different numbers of
particles in each event. Typically for fast-carpenter, a jagged array refers to the specific implementation from
the awkward-array package

19

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://github.com/scikit-hep/awkward-array

fast-carpenter Documentation, Release 0.17.4

20 Chapter 7. Glossary

CHAPTER 8

fast_carpenter package

Top-level package for fast-carpenter.

class fast_carpenter.Define(name, out_dir, variables)
Bases: object

Creates new variables using a string-based expression.

There are two types of expressions:

• Simple formulae, and

• Reducing formulae.

The essential difference, unfortunately, is an internal one: simple expressions are nearly directly handled by
numexpr, whereas reducing expressions add a layer on top.

From a users perspective, however, simple expressions are those that preserve the dimensionality of the input.
If one of the input variables represents a list of values for each event (whose length might vary), then the output
will contain an equal-length list of values for each event.

If, however, a reducing expression is used, then there will be one less dimension on the resulting variable. In
this case, if an input variable has a list of values for each event, the result of the expression will only contain a
single value per event.

Parameters variables (list[dictionary]) – A list of single-length dictionaries whose key
is the name of the resulting variable, and whose value is the expression to create it.

Other Parameters

• name (str) – The name of this stage (handled automatically by fast-flow)

• out_dir (str) – Where to put the summary table (handled automatically by fast-flow)

Example

21

https://docs.python.org/3/library/functions.html#object
https://numexpr.readthedocs.io/en/latest/
https://docs.python.org/3/library/stdtypes.html#list

fast-carpenter Documentation, Release 0.17.4

variables:
- Muon_pt: "sqrt(Muon_px**2 + Muon_py**2)"
- Muon_is_good: (Muon_iso > 0.3) & (Muon_pt > 10)
- NGoodMuons: {reduce: count_nonzero, formula: Muon_is_good}
- First_Muon_pt: {reduce: 0, formula: Muon_pt}

See also:

• fast_carpenter.define.reductions– for how reductions are handled and exactly what is valid.

• numexpr: which is used for the internal expression handling.

event(chunk)

class fast_carpenter.SystematicWeights(name, out_dir, weights, out_format=’weight_{}’, ex-
tra_variations=[])

Bases: object

Combines multiple weights and variations to produce a single event weight

To study the impact of systematic uncertainties it is common to re-weight events using a variation of the weights
representing, for example, a 1-sigma increase or decrease in the weights. Once there are multiple weight
schemes involved writing out each possible combination of these weights becomes tedious and potentially error-
prone; this stage makes it easier.

It forms the nominal weight for each event by multiplying all nominal weights together, then the specific
variation by replacing a given nominal weight with its corresponding “up” or “down” variation.

Each variation of a weight should just be a string giving an expression to use for that variation. This stage
then combines these into a single expression by joining each set of variations with “*”, i.e. multiplying them
together. The final results then use an internal Define stage to do the calculation.

Parameters

• weights (dictionary[str, dictionary]) – A Dictionary of weight variations
to combine. The keys in this dictionary will determine how this variation is called in the
output variable. The values of this dictionary should either be a single string – the name
of the input variable to use for the “nominal” variation, or a dictionary containing any of
the keys, nominal, up, or down. Each of these should then have a value providing the
expression to use for that variation/

• out_format (str) – The format string to use to build the name of the output variations.
Defaults to “weight_{}”. Should contain a pair of empty braces which will be replaced with
the name for the current variation, e.g. “nominal” or “PileUp_up”.

• extra_variations (list[str]) – A list of additional variations to allow

Other Parameters

• name (str) – The name of this stage (handled automatically by fast-flow)

• out_dir (str) – Where to put the summary table (handled automatically by fast-flow)

Example

syst_weights:
energy_scale: {nominal: WeightEnergyScale, up: WeightEnergyScaleUp, down:

→˓WeightEnergyScaleDown}

(continues on next page)

22 Chapter 8. fast_carpenter package

https://numexpr.readthedocs.io/en/latest/
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

fast-carpenter Documentation, Release 0.17.4

(continued from previous page)

trigger: TriggerEfficiency
recon: {nominal: ReconEfficiency, up: ReconEfficiency_up}

which will create 4 new variables:

weight_nominal = WeightEnergyScale * TriggerEfficiency * ReconEfficiency
weight_energy_scale_up = WeightEnergyScaleUp * TriggerEfficiency *
→˓ReconEfficiency
weight_energy_scale_down = WeightEnergyScaleDown * TriggerEfficiency *
→˓ReconEfficiency
weight_recon_up = WeightEnergyScale * TriggerEfficiency * ReconEfficiency_up

event(chunk)

class fast_carpenter.CutFlow(name, out_dir, selection_file=None, keep_unique_id=False, selec-
tion=None, counter=True, weights=None)

Bases: object

Prevents subsequent stages seeing certain events.

The two most important parameters to understand are the selection and weights parameters.

Parameters

• selection (str or dict) – The criteria for selecting events, formed by a nested set
of “cuts”. Each cut must either be a valid Expressions or a single-length dictionary, with
one of Any or All as the key, and a list of cuts as the value.

• weights (str or list[str], dict[str, str]) – How to weight events in the
output summary table. Must be either a single variable, a list of variables, or a dictionary
where the values are variables in the data and keys are the column names that these weights
should be called in the output tables.

Example

Mask events using a single cut based on the nJet variable being greater than 2 and weight events in the
summary table by the EventWeight variable:

cut_flow_1:
selection:

nJet > 2
weights: EventWeight

Mask events by requiring both the nMuon variable being greater than 2 and the first Muon_energy value in
each event being above 20. Don’t weight events in the summary table:

cut_flow_2:
selection:

All:
- nMuon > 2
- {reduce: 0, formula: Muon_energy > 20}

Mask events by requiring the nMuon variable be greater than 2 and either the first Muon_energy value in each
event is above 20 or the total_energy is greater than 100. The summary table will weight events by both
the EventWeight variable (called weight_nominal in the table) and the SystUp variable (called weight_syst_up
in the summary):

23

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/reference/expressions.html#expressions
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

fast-carpenter Documentation, Release 0.17.4

cut_flow_3:
selection:

All:
- nMuon > 2
- Any:
- {reduce: 0, formula: Muon_energy > 20}
- total_energy > 100

weights: {weight_nominal: EventWeight, weight_syst_up: SystUp}

Other Parameters

• name (str) – The name of this stage (handled automatically by fast-flow)

• out_dir (str) – Where to put the summary table (handled automatically by fast-flow)

• selection_file (str) – Deprecated

• keep_unique_id (bool) – If True, the summary table will contain a column that gives each
cut a unique id. This is used internally to maintain the cut order, and often will not be useful
in subsequent manipulation of the output table, so by default this is removed.

• counter (bool) – Currently unused

Raises BadCutflowConfig – If neither or both of selection and selection_file are
provided, or if a bad selection or weight configuration is given.

See also:

SelectPhaseSpace: Adds the resulting event-mask as a new variable to the data.

selection.filters.build_selection(): Handles the actual creation of the event selection, based
on the configuration.

numexpr: which is used for the internal expression handling.

collector()

event(chunk)

merge(rhs)

class fast_carpenter.SelectPhaseSpace(name, out_dir, region_name, **kwargs)
Bases: fast_carpenter.selection.stage.CutFlow

Creates an event-mask and adds it to the data-space.

This is identical to the CutFlow class, except that the resulting mask is added to the list of variables in the
data-space, rather than being used directly to remove events. This allows multiple “regions” to be defined using
different CutFlows in a single configuration.

Parameters region_name – The name given to the resulting mask when added to back to the
data-space.

See also:

CutFlow : for a description of the other parameters.

event(chunk)

class fast_carpenter.BinnedDataframe(name, out_dir, binning, weights=None,
dataset_col=True, pad_missing=False,
file_format=None)

Bases: object

24 Chapter 8. fast_carpenter package

https://numexpr.readthedocs.io/en/latest/
https://docs.python.org/3/library/functions.html#object

fast-carpenter Documentation, Release 0.17.4

Produces a binned dataframe (a multi-dimensional histogram).

def __init__(self, name, out_dir, binning, weights=None, dataset_col=False):

Parameters

• binning (list[dict]) – A list of dictionaries describing the variables to bin on, and
how they should be binned. Each of these dictionaries can contain the following:

Parameter Default Description
in The name of the attribute

on the event to use.
out same as in The name of the column

to be filled in the output
dataframe.

bins None

Must be either None or a
dictionary. If a dictionary,
it must contain one of the
follow sets of
key-value pairs:

1. nbins, low,
high: which are
used to produce a
list of bin edges
equivalent to:

numpy.
linspace(low,
high,
nbins +
1)

2. edges: which is
treated as the list of
bin edges directly.

If set to None, then the
input variable is assumed
to already be categorical
(ie. binned or discrete)

• weights (str or list[str], dict[str, str]) – How to weight events in the
output table. Must be either a single variable, a list of variables, or a dictionary where the
values are variables in the data and keys are the column names that these weights should be
called in the output tables.

• file_format (str or list[str], dict[str, str]) – determines the file
format to use to save the binned dataframe to disk. Should be either a) a string with the
file format, b) a dict containing the keyword extension to give the file format and then all
other keyword-argument pairs are passed on to the corresponding pandas function, or c) a
list of values matching a) or b).

• dataset_col (bool) – adds an extra binning column with the name for each dataset.

• pad_missing (bool) – If False, any bins that don’t contain data are excluded from the
stored dataframe. Leaving this False can save some disk-space and improve processing

25

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

fast-carpenter Documentation, Release 0.17.4

time, particularly if the bins are only very sparsely filled.

Other Parameters

• name (str) – The name of this stage (handled automatically by fast-flow)

• out_dir (str) – Where to put the summary table (handled automatically by fast-flow)

Raises BadBinnedDataframeConfig – If there is an issue with the binning description.

collector()

event(chunk)

merge(rhs)

class fast_carpenter.BuildAghast(name, out_dir, binning, weights=None, dataset_col=True)
Bases: object

Builds an aghast histogram.

Can be parametrized in the same way as fast_carpenter.BinnedDataframe (and actually uses that
stage behind the scenes) but additionally writes out a Ghast which can be reloaded with other ghast packages.

See also:

• fast_carpenter.BinnedDataframe for a version which only produces binned pandas
dataframes.

• The aghast main page: https://github.com/scikit-hep/aghast.

collector()

contents

event(chunk)

merge(rhs)

8.1 Subpackages

8.1.1 fast_carpenter.backends package

Provides a common interface to select a backend

Each backend is wrapped in a function so that it is only imported if requested

fast_carpenter.backends.get_alphatwirl()

fast_carpenter.backends.get_backend(name)

fast_carpenter.backends.get_coffea()

Submodules

fast_carpenter.backends.alphatwirl module

Functions to run a job using alphatwirl

class fast_carpenter.backends.alphatwirl.AtuprootContext
Bases: object

26 Chapter 8. fast_carpenter package

https://docs.python.org/3/library/functions.html#object
https://github.com/scikit-hep/aghast
https://docs.python.org/3/library/functions.html#object

fast-carpenter Documentation, Release 0.17.4

class fast_carpenter.backends.alphatwirl.DummyCollector
Bases: object

collect(*args, **kwargs)

fast_carpenter.backends.alphatwirl.execute(sequence, datasets, args)
Run a job using alphatwirl and atuproot

fast_carpenter.backends.coffea module

8.1.2 fast_carpenter.define package

class fast_carpenter.define.Define(name, out_dir, variables)
Bases: object

Creates new variables using a string-based expression.

There are two types of expressions:

• Simple formulae, and

• Reducing formulae.

The essential difference, unfortunately, is an internal one: simple expressions are nearly directly handled by
numexpr, whereas reducing expressions add a layer on top.

From a users perspective, however, simple expressions are those that preserve the dimensionality of the input.
If one of the input variables represents a list of values for each event (whose length might vary), then the output
will contain an equal-length list of values for each event.

If, however, a reducing expression is used, then there will be one less dimension on the resulting variable. In
this case, if an input variable has a list of values for each event, the result of the expression will only contain a
single value per event.

Parameters variables (list[dictionary]) – A list of single-length dictionaries whose
key is the name of the resulting variable, and whose value is the expression to create it.

Other Parameters

• name (str) – The name of this stage (handled automatically by fast-flow)

• out_dir (str) – Where to put the summary table (handled automatically by fast-flow)

Example

variables:
- Muon_pt: "sqrt(Muon_px**2 + Muon_py**2)"
- Muon_is_good: (Muon_iso > 0.3) & (Muon_pt > 10)
- NGoodMuons: {reduce: count_nonzero, formula: Muon_is_good}
- First_Muon_pt: {reduce: 0, formula: Muon_pt}

See also:

• fast_carpenter.define.reductions– for how reductions are handled and exactly what is
valid.

• numexpr: which is used for the internal expression handling.

event(chunk)

8.1. Subpackages 27

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://numexpr.readthedocs.io/en/latest/
https://docs.python.org/3/library/stdtypes.html#list
https://numexpr.readthedocs.io/en/latest/

fast-carpenter Documentation, Release 0.17.4

class fast_carpenter.define.SystematicWeights(name, out_dir, weights,
out_format=’weight_{}’, ex-
tra_variations=[])

Bases: object

Combines multiple weights and variations to produce a single event weight

To study the impact of systematic uncertainties it is common to re-weight events using a variation of the weights
representing, for example, a 1-sigma increase or decrease in the weights. Once there are multiple weight
schemes involved writing out each possible combination of these weights becomes tedious and potentially error-
prone; this stage makes it easier.

It forms the nominal weight for each event by multiplying all nominal weights together, then the specific
variation by replacing a given nominal weight with its corresponding “up” or “down” variation.

Each variation of a weight should just be a string giving an expression to use for that variation. This stage
then combines these into a single expression by joining each set of variations with “*”, i.e. multiplying them
together. The final results then use an internal Define stage to do the calculation.

Parameters

• weights (dictionary[str, dictionary]) – A Dictionary of weight varia-
tions to combine. The keys in this dictionary will determine how this variation is called
in the output variable. The values of this dictionary should either be a single string – the
name of the input variable to use for the “nominal” variation, or a dictionary contain-
ing any of the keys, nominal, up, or down. Each of these should then have a value
providing the expression to use for that variation/

• out_format (str) – The format string to use to build the name of the output vari-
ations. Defaults to “weight_{}”. Should contain a pair of empty braces which will be
replaced with the name for the current variation, e.g. “nominal” or “PileUp_up”.

• extra_variations (list[str]) – A list of additional variations to allow

Other Parameters

• name (str) – The name of this stage (handled automatically by fast-flow)

• out_dir (str) – Where to put the summary table (handled automatically by fast-flow)

Example

syst_weights:
energy_scale: {nominal: WeightEnergyScale, up: WeightEnergyScaleUp, down:

→˓WeightEnergyScaleDown}
trigger: TriggerEfficiency
recon: {nominal: ReconEfficiency, up: ReconEfficiency_up}

which will create 4 new variables:

weight_nominal = WeightEnergyScale * TriggerEfficiency * ReconEfficiency
weight_energy_scale_up = WeightEnergyScaleUp * TriggerEfficiency *
→˓ReconEfficiency
weight_energy_scale_down = WeightEnergyScaleDown * TriggerEfficiency *
→˓ReconEfficiency
weight_recon_up = WeightEnergyScale * TriggerEfficiency * ReconEfficiency_up

event(chunk)

28 Chapter 8. fast_carpenter package

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

fast-carpenter Documentation, Release 0.17.4

Submodules

fast_carpenter.define.reductions module

fast_carpenter.define.reductions.get_pandas_reduction(stage_name, reduction)

fast_carpenter.define.systematics module

exception fast_carpenter.define.systematics.BadSystematicWeightsConfig
Bases: Exception

class fast_carpenter.define.systematics.SystematicWeights(name, out_dir, weights,
out_format=’weight_{}’,
extra_variations=[])

Bases: object

Combines multiple weights and variations to produce a single event weight

To study the impact of systematic uncertainties it is common to re-weight events using a variation of the weights
representing, for example, a 1-sigma increase or decrease in the weights. Once there are multiple weight
schemes involved writing out each possible combination of these weights becomes tedious and potentially error-
prone; this stage makes it easier.

It forms the nominal weight for each event by multiplying all nominal weights together, then the specific
variation by replacing a given nominal weight with its corresponding “up” or “down” variation.

Each variation of a weight should just be a string giving an expression to use for that variation. This stage
then combines these into a single expression by joining each set of variations with “*”, i.e. multiplying them
together. The final results then use an internal Define stage to do the calculation.

Parameters

• weights (dictionary[str, dictionary]) – A Dictionary of weight varia-
tions to combine. The keys in this dictionary will determine how this variation is called
in the output variable. The values of this dictionary should either be a single string – the
name of the input variable to use for the “nominal” variation, or a dictionary contain-
ing any of the keys, nominal, up, or down. Each of these should then have a value
providing the expression to use for that variation/

• out_format (str) – The format string to use to build the name of the output vari-
ations. Defaults to “weight_{}”. Should contain a pair of empty braces which will be
replaced with the name for the current variation, e.g. “nominal” or “PileUp_up”.

• extra_variations (list[str]) – A list of additional variations to allow

Other Parameters

• name (str) – The name of this stage (handled automatically by fast-flow)

• out_dir (str) – Where to put the summary table (handled automatically by fast-flow)

Example

syst_weights:
energy_scale: {nominal: WeightEnergyScale, up: WeightEnergyScaleUp, down:

→˓WeightEnergyScaleDown}
trigger: TriggerEfficiency
recon: {nominal: ReconEfficiency, up: ReconEfficiency_up}

8.1. Subpackages 29

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

fast-carpenter Documentation, Release 0.17.4

which will create 4 new variables:

weight_nominal = WeightEnergyScale * TriggerEfficiency * ReconEfficiency
weight_energy_scale_up = WeightEnergyScaleUp * TriggerEfficiency *
→˓ReconEfficiency
weight_energy_scale_down = WeightEnergyScaleDown * TriggerEfficiency *
→˓ReconEfficiency
weight_recon_up = WeightEnergyScale * TriggerEfficiency * ReconEfficiency_up

event(chunk)

fast_carpenter.define.variables module

exception fast_carpenter.define.variables.BadVariablesConfig
Bases: Exception

class fast_carpenter.define.variables.CalculationCfg(name, expression, reduction,
fill_missing, mask)

Bases: tuple

expression
Alias for field number 1

fill_missing
Alias for field number 3

mask
Alias for field number 4

name
Alias for field number 0

reduction
Alias for field number 2

class fast_carpenter.define.variables.Define(name, out_dir, variables)
Bases: object

Creates new variables using a string-based expression.

There are two types of expressions:

• Simple formulae, and

• Reducing formulae.

The essential difference, unfortunately, is an internal one: simple expressions are nearly directly handled by
numexpr, whereas reducing expressions add a layer on top.

From a users perspective, however, simple expressions are those that preserve the dimensionality of the input.
If one of the input variables represents a list of values for each event (whose length might vary), then the output
will contain an equal-length list of values for each event.

If, however, a reducing expression is used, then there will be one less dimension on the resulting variable. In
this case, if an input variable has a list of values for each event, the result of the expression will only contain a
single value per event.

Parameters variables (list[dictionary]) – A list of single-length dictionaries whose
key is the name of the resulting variable, and whose value is the expression to create it.

Other Parameters

30 Chapter 8. fast_carpenter package

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#object
https://numexpr.readthedocs.io/en/latest/
https://docs.python.org/3/library/stdtypes.html#list

fast-carpenter Documentation, Release 0.17.4

• name (str) – The name of this stage (handled automatically by fast-flow)

• out_dir (str) – Where to put the summary table (handled automatically by fast-flow)

Example

variables:
- Muon_pt: "sqrt(Muon_px**2 + Muon_py**2)"
- Muon_is_good: (Muon_iso > 0.3) & (Muon_pt > 10)
- NGoodMuons: {reduce: count_nonzero, formula: Muon_is_good}
- First_Muon_pt: {reduce: 0, formula: Muon_pt}

See also:

• fast_carpenter.define.reductions– for how reductions are handled and exactly what is
valid.

• numexpr: which is used for the internal expression handling.

event(chunk)

class fast_carpenter.define.variables.DefinePandas(name, out_dir, variables)
Bases: object

event(chunk)

fast_carpenter.define.variables.full_evaluate(tree, expression, fill_missing, mask=None,
reduction=None)

8.1.3 fast_carpenter.selection package

class fast_carpenter.selection.CutFlow(name, out_dir, selection_file=None,
keep_unique_id=False, selection=None,
counter=True, weights=None)

Bases: object

Prevents subsequent stages seeing certain events.

The two most important parameters to understand are the selection and weights parameters.

Parameters

• selection (str or dict) – The criteria for selecting events, formed by a nested
set of “cuts”. Each cut must either be a valid Expressions or a single-length dictionary,
with one of Any or All as the key, and a list of cuts as the value.

• weights (str or list[str], dict[str, str]) – How to weight events in
the output summary table. Must be either a single variable, a list of variables, or a dictio-
nary where the values are variables in the data and keys are the column names that these
weights should be called in the output tables.

Example

Mask events using a single cut based on the nJet variable being greater than 2 and weight events in the
summary table by the EventWeight variable:

8.1. Subpackages 31

https://numexpr.readthedocs.io/en/latest/
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/reference/expressions.html#expressions
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

fast-carpenter Documentation, Release 0.17.4

cut_flow_1:
selection:

nJet > 2
weights: EventWeight

Mask events by requiring both the nMuon variable being greater than 2 and the first Muon_energy value in
each event being above 20. Don’t weight events in the summary table:

cut_flow_2:
selection:

All:
- nMuon > 2
- {reduce: 0, formula: Muon_energy > 20}

Mask events by requiring the nMuon variable be greater than 2 and either the first Muon_energy value in each
event is above 20 or the total_energy is greater than 100. The summary table will weight events by both
the EventWeight variable (called weight_nominal in the table) and the SystUp variable (called weight_syst_up
in the summary):

cut_flow_3:
selection:

All:
- nMuon > 2
- Any:
- {reduce: 0, formula: Muon_energy > 20}
- total_energy > 100

weights: {weight_nominal: EventWeight, weight_syst_up: SystUp}

Other Parameters

• name (str) – The name of this stage (handled automatically by fast-flow)

• out_dir (str) – Where to put the summary table (handled automatically by fast-flow)

• selection_file (str) – Deprecated

• keep_unique_id (bool) – If True, the summary table will contain a column that gives
each cut a unique id. This is used internally to maintain the cut order, and often will not
be useful in subsequent manipulation of the output table, so by default this is removed.

• counter (bool) – Currently unused

Raises BadCutflowConfig – If neither or both of selection and selection_file are
provided, or if a bad selection or weight configuration is given.

See also:

SelectPhaseSpace: Adds the resulting event-mask as a new variable to the data.

selection.filters.build_selection(): Handles the actual creation of the event selection, based
on the configuration.

numexpr: which is used for the internal expression handling.

collector()

event(chunk)

merge(rhs)

32 Chapter 8. fast_carpenter package

https://numexpr.readthedocs.io/en/latest/

fast-carpenter Documentation, Release 0.17.4

class fast_carpenter.selection.SelectPhaseSpace(name, out_dir, region_name,
**kwargs)

Bases: fast_carpenter.selection.stage.CutFlow

Creates an event-mask and adds it to the data-space.

This is identical to the CutFlow class, except that the resulting mask is added to the list of variables in the
data-space, rather than being used directly to remove events. This allows multiple “regions” to be defined using
different CutFlows in a single configuration.

Parameters region_name – The name given to the resulting mask when added to back to the
data-space.

See also:

CutFlow : for a description of the other parameters.

event(chunk)

Submodules

fast_carpenter.selection.filters module

class fast_carpenter.selection.filters.All(selection, depth, cut_id, weights)
Bases: fast_carpenter.selection.filters.BaseFilter

class fast_carpenter.selection.filters.Any(selection, depth, cut_id, weights)
Bases: fast_carpenter.selection.filters.BaseFilter

class fast_carpenter.selection.filters.BaseFilter(selection, depth, cut_id, weights)
Bases: object

columns

increment_counters(data, is_mc, excl, before, after)

index_values

merge(rhs)

to_dataframe()

values

class fast_carpenter.selection.filters.Counter(weights)
Bases: object

add(rhs)

counts

static get_unweighted_increment(data, mask)

static get_weighted_increment(weight_names, data, mask)

increment(data, is_mc, mask=None)

class fast_carpenter.selection.filters.OuterCounterIncrementer(*args,
**kwargs)

Bases: fast_carpenter.selection.filters.BaseFilter

class fast_carpenter.selection.filters.ReduceSingleCut(stage_name, depth, cut_id,
weights, selection)

Bases: fast_carpenter.selection.filters.BaseFilter

8.1. Subpackages 33

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

fast-carpenter Documentation, Release 0.17.4

class fast_carpenter.selection.filters.SingleCut(selection, depth, cut_id, weights)
Bases: fast_carpenter.selection.filters.BaseFilter

fast_carpenter.selection.filters.build_selection(stage_name, config, weights=[])
Creates event selectors based on the configuration.

Parameters

• stage_name – Used to help in error messages.

• config – The event selection configuration.

• weights – How to weight events, used to produce the resulting cut efficiency table.

Raises RuntimeError – if any of the configurations are invalid.

fast_carpenter.selection.filters.handle_config(stage_name, config, weights, depth=0,
cut_id=[0])

fast_carpenter.selection.filters.safe_and(left, right)

fast_carpenter.selection.filters.safe_or(left, right)

fast_carpenter.selection.stage module

Stages to remove events from subsequent stages

Provides two stages:

• CutFlow – Prevent subsequent stages from seeing certain events,

• SelectPhaseSpace – Create a new variable which can be used as a mask

Both stages are configured very similarly, and both stages produce an output table describing how many events pass
each subsequent cut to make it into the final mask.

class fast_carpenter.selection.stage.CutFlow(name, out_dir, selection_file=None,
keep_unique_id=False, selection=None,
counter=True, weights=None)

Bases: object

Prevents subsequent stages seeing certain events.

The two most important parameters to understand are the selection and weights parameters.

Parameters

• selection (str or dict) – The criteria for selecting events, formed by a nested
set of “cuts”. Each cut must either be a valid Expressions or a single-length dictionary,
with one of Any or All as the key, and a list of cuts as the value.

• weights (str or list[str], dict[str, str]) – How to weight events in
the output summary table. Must be either a single variable, a list of variables, or a dictio-
nary where the values are variables in the data and keys are the column names that these
weights should be called in the output tables.

Example

Mask events using a single cut based on the nJet variable being greater than 2 and weight events in the
summary table by the EventWeight variable:

34 Chapter 8. fast_carpenter package

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/reference/expressions.html#expressions
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

fast-carpenter Documentation, Release 0.17.4

cut_flow_1:
selection:

nJet > 2
weights: EventWeight

Mask events by requiring both the nMuon variable being greater than 2 and the first Muon_energy value in
each event being above 20. Don’t weight events in the summary table:

cut_flow_2:
selection:

All:
- nMuon > 2
- {reduce: 0, formula: Muon_energy > 20}

Mask events by requiring the nMuon variable be greater than 2 and either the first Muon_energy value in each
event is above 20 or the total_energy is greater than 100. The summary table will weight events by both
the EventWeight variable (called weight_nominal in the table) and the SystUp variable (called weight_syst_up
in the summary):

cut_flow_3:
selection:

All:
- nMuon > 2
- Any:
- {reduce: 0, formula: Muon_energy > 20}
- total_energy > 100

weights: {weight_nominal: EventWeight, weight_syst_up: SystUp}

Other Parameters

• name (str) – The name of this stage (handled automatically by fast-flow)

• out_dir (str) – Where to put the summary table (handled automatically by fast-flow)

• selection_file (str) – Deprecated

• keep_unique_id (bool) – If True, the summary table will contain a column that gives
each cut a unique id. This is used internally to maintain the cut order, and often will not
be useful in subsequent manipulation of the output table, so by default this is removed.

• counter (bool) – Currently unused

Raises BadCutflowConfig – If neither or both of selection and selection_file are
provided, or if a bad selection or weight configuration is given.

See also:

SelectPhaseSpace: Adds the resulting event-mask as a new variable to the data.

selection.filters.build_selection(): Handles the actual creation of the event selection, based
on the configuration.

numexpr: which is used for the internal expression handling.

collector()

event(chunk)

merge(rhs)

8.1. Subpackages 35

https://numexpr.readthedocs.io/en/latest/

fast-carpenter Documentation, Release 0.17.4

class fast_carpenter.selection.stage.SelectPhaseSpace(name, out_dir, region_name,
**kwargs)

Bases: fast_carpenter.selection.stage.CutFlow

Creates an event-mask and adds it to the data-space.

This is identical to the CutFlow class, except that the resulting mask is added to the list of variables in the
data-space, rather than being used directly to remove events. This allows multiple “regions” to be defined using
different CutFlows in a single configuration.

Parameters region_name – The name given to the resulting mask when added to back to the
data-space.

See also:

CutFlow : for a description of the other parameters.

event(chunk)

8.1.4 fast_carpenter.summary package

class fast_carpenter.summary.BuildAghast(name, out_dir, binning, weights=None,
dataset_col=True)

Bases: object

Builds an aghast histogram.

Can be parametrized in the same way as fast_carpenter.BinnedDataframe (and actually uses that
stage behind the scenes) but additionally writes out a Ghast which can be reloaded with other ghast packages.

See also:

• fast_carpenter.BinnedDataframe for a version which only produces binned pandas
dataframes.

• The aghast main page: https://github.com/scikit-hep/aghast.

collector()

contents

event(chunk)

merge(rhs)

class fast_carpenter.summary.BinnedDataframe(name, out_dir, binning, weights=None,
dataset_col=True, pad_missing=False,
file_format=None)

Bases: object

Produces a binned dataframe (a multi-dimensional histogram).

def __init__(self, name, out_dir, binning, weights=None, dataset_col=False):

Parameters

• binning (list[dict]) – A list of dictionaries describing the variables to bin on, and
how they should be binned. Each of these dictionaries can contain the following:

36 Chapter 8. fast_carpenter package

https://docs.python.org/3/library/functions.html#object
https://github.com/scikit-hep/aghast
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

fast-carpenter Documentation, Release 0.17.4

Parameter Default Description
in The name of the attribute

on the event to use.
out same as in The name of the column

to be filled in the output
dataframe.

bins None

Must be either None or a
dictionary. If a dictionary,
it must contain one of the
follow sets of
key-value pairs:

1. nbins, low,
high: which are
used to produce a
list of bin edges
equivalent to:

numpy.
linspace(low,
high,
nbins +
1)

2. edges: which is
treated as the list of
bin edges directly.

If set to None, then the
input variable is assumed
to already be categorical
(ie. binned or discrete)

• weights (str or list[str], dict[str, str]) – How to weight events in
the output table. Must be either a single variable, a list of variables, or a dictionary where
the values are variables in the data and keys are the column names that these weights
should be called in the output tables.

• file_format (str or list[str], dict[str, str]) – determines the file
format to use to save the binned dataframe to disk. Should be either a) a string with the
file format, b) a dict containing the keyword extension to give the file format and then all
other keyword-argument pairs are passed on to the corresponding pandas function, or c)
a list of values matching a) or b).

• dataset_col (bool) – adds an extra binning column with the name for each dataset.

• pad_missing (bool) – If False, any bins that don’t contain data are excluded from
the stored dataframe. Leaving this False can save some disk-space and improve pro-
cessing time, particularly if the bins are only very sparsely filled.

Other Parameters

• name (str) – The name of this stage (handled automatically by fast-flow)

• out_dir (str) – Where to put the summary table (handled automatically by fast-flow)

Raises BadBinnedDataframeConfig – If there is an issue with the binning description.

8.1. Subpackages 37

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

fast-carpenter Documentation, Release 0.17.4

collector()

event(chunk)

merge(rhs)

class fast_carpenter.summary.EventByEventDataframe(name, out_dir, collections,
mask=None, flatten=True)

Bases: object

Write out a pandas dataframe with event-level values

collector()

event(chunk)

merge(rhs)

Submodules

fast_carpenter.summary.aghast module

class fast_carpenter.summary.aghast.BuildAghast(name, out_dir, binning, weights=None,
dataset_col=True)

Bases: object

Builds an aghast histogram.

Can be parametrized in the same way as fast_carpenter.BinnedDataframe (and actually uses that
stage behind the scenes) but additionally writes out a Ghast which can be reloaded with other ghast packages.

See also:

• fast_carpenter.BinnedDataframe for a version which only produces binned pandas
dataframes.

• The aghast main page: https://github.com/scikit-hep/aghast.

collector()

contents

event(chunk)

merge(rhs)

class fast_carpenter.summary.aghast.Collector(filename, axes, edges, by_dataset)
Bases: object

collect(dataset_readers_list)

fast_carpenter.summary.aghast.bin_one_dimension(low=None, high=None, nbins=None,
edges=None, **kwargs)

fast_carpenter.summary.aghast.complete_axes(axes, df_index)

fast_carpenter.summary.aghast.convert_to_counters(df)

38 Chapter 8. fast_carpenter package

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://github.com/scikit-hep/aghast
https://docs.python.org/3/library/functions.html#object

fast-carpenter Documentation, Release 0.17.4

fast_carpenter.summary.binned_dataframe module

Summarize the data by producing binned and possibly weighted counts of the data.

class fast_carpenter.summary.binned_dataframe.BinnedDataframe(name, out_dir,
binning,
weights=None,
dataset_col=True,
pad_missing=False,
file_format=None)

Bases: object

Produces a binned dataframe (a multi-dimensional histogram).

def __init__(self, name, out_dir, binning, weights=None, dataset_col=False):

Parameters

• binning (list[dict]) – A list of dictionaries describing the variables to bin on, and
how they should be binned. Each of these dictionaries can contain the following:

Parameter Default Description
in The name of the attribute

on the event to use.
out same as in The name of the column

to be filled in the output
dataframe.

bins None

Must be either None or a
dictionary. If a dictionary,
it must contain one of the
follow sets of
key-value pairs:

1. nbins, low,
high: which are
used to produce a
list of bin edges
equivalent to:

numpy.
linspace(low,
high,
nbins +
1)

2. edges: which is
treated as the list of
bin edges directly.

If set to None, then the
input variable is assumed
to already be categorical
(ie. binned or discrete)

• weights (str or list[str], dict[str, str]) – How to weight events in
the output table. Must be either a single variable, a list of variables, or a dictionary where

8.1. Subpackages 39

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

fast-carpenter Documentation, Release 0.17.4

the values are variables in the data and keys are the column names that these weights
should be called in the output tables.

• file_format (str or list[str], dict[str, str]) – determines the file
format to use to save the binned dataframe to disk. Should be either a) a string with the
file format, b) a dict containing the keyword extension to give the file format and then all
other keyword-argument pairs are passed on to the corresponding pandas function, or c)
a list of values matching a) or b).

• dataset_col (bool) – adds an extra binning column with the name for each dataset.

• pad_missing (bool) – If False, any bins that don’t contain data are excluded from
the stored dataframe. Leaving this False can save some disk-space and improve pro-
cessing time, particularly if the bins are only very sparsely filled.

Other Parameters

• name (str) – The name of this stage (handled automatically by fast-flow)

• out_dir (str) – Where to put the summary table (handled automatically by fast-flow)

Raises BadBinnedDataframeConfig – If there is an issue with the binning description.

collector()

event(chunk)

merge(rhs)

class fast_carpenter.summary.binned_dataframe.Collector(filename, dataset_col, bin-
nings, file_format)

Bases: object

collect(dataset_readers_list, doReturn=True, writeFiles=True)

valid_ext = {'dta': 'stata', 'h5': 'hdf', 'msg': 'msgpack', 'p': 'pickle', 'pkl': 'pickle', 'xlsx': 'excel'}

fast_carpenter.summary.binned_dataframe.combined_dataframes(dataset_readers_list,
dataset_col, bin-
nings=None)

fast_carpenter.summary.binned_dataframe.densify_dataframe(in_df, binnings)

fast_carpenter.summary.binned_dataframe.explode(df)
Based on this answer: https://stackoverflow.com/questions/12680754/split-explode-pandas -dataframe-string-
entry-to-separate-rows/40449726#40449726

fast_carpenter.summary.binning_config module

exception fast_carpenter.summary.binning_config.BadBinnedDataframeConfig
Bases: Exception

fast_carpenter.summary.binning_config.bin_one_dimension(low=None, high=None,
nbins=None, edges=None,
overflow=True, under-
flow=True)

fast_carpenter.summary.binning_config.create_binning_list(name, bin_list,
make_bins=None)

fast_carpenter.summary.binning_config.create_file_format(stage_name, file_format)

40 Chapter 8. fast_carpenter package

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://stackoverflow.com/questions/12680754/split-explode-pandas
https://docs.python.org/3/library/exceptions.html#Exception

fast-carpenter Documentation, Release 0.17.4

fast_carpenter.summary.binning_config.create_one_dimension(stage_name,
_in, _out=None,
_bins=None,
_index=None,
make_bins=None)

fast_carpenter.summary.binning_config.create_weights(stage_name, weights)

fast_carpenter.summary.event_level_dataframe module

class fast_carpenter.summary.event_level_dataframe.Collector(filename)
Bases: object

collect(dataset_readers_list)

class fast_carpenter.summary.event_level_dataframe.EventByEventDataframe(name,
out_dir,
col-
lec-
tions,
mask=None,
flat-
ten=True)

Bases: object

Write out a pandas dataframe with event-level values

collector()

event(chunk)

merge(rhs)

fast_carpenter.summary.import_aghast module

class fast_carpenter.summary.import_aghast.AghastCatcher
Bases: object

8.2 Submodules

8.2.1 fast_carpenter.event_builder module

class fast_carpenter.event_builder.BEventsWrapped(tree, *args, **kwargs)
Bases: atuproot.BEvents.BEvents

class fast_carpenter.event_builder.EventBuilder(config)
Bases: object

class fast_carpenter.event_builder.EventRanger
Bases: object

entries_in_block

set_owner(owner)

start_entry

8.2. Submodules 41

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

fast-carpenter Documentation, Release 0.17.4

stop_entry

8.2.2 fast_carpenter.expressions module

fast_carpenter.expressions.get_branches(cut, valid)

fast_carpenter.expressions.evaluate(tree, expression)

8.2.3 fast_carpenter.help module

class fast_carpenter.help.StageGuidanceHelper(stage_class, module_name)
Bases: object

class_name

docstring(nlines=-1)

matches(regex)

parameters()

stage

fast_carpenter.help.format_signature(args, vargs, kwargs, defaults, annots)

fast_carpenter.help.get_signature(function)

fast_carpenter.help.help_stages(stage_name, full_output=False)

8.2.4 fast_carpenter.masked_tree module

class fast_carpenter.masked_tree.MaskedUprootTree(tree, event_ranger, mask=None)
Bases: object

class PandasWrap(owner)
Bases: object

df(*args, **kwargs)

apply_mask(new_mask)

array(*args, **kwargs)

arrays(*args, **kwargs)

mask

pandas

reset_mask()

unmasked_array(*args, **kwargs)

unmasked_arrays(*args, **kwargs)

fast_carpenter.masked_tree.mask_df(df, mask, start_event)

42 Chapter 8. fast_carpenter package

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

fast-carpenter Documentation, Release 0.17.4

8.2.5 fast_carpenter.tree_wrapper module

This has to be what is probably the hackiest piece of code I’ve ever written. It’s very tightly coupled to uproot, and
just by importing it will change the way uproot works. However, it allows me to achieve the functionality of adding a
branch to uproot trees with no changes to actual code in uproot and with minimal coding on my side. . .

class fast_carpenter.tree_wrapper.WrappedTree(tree, event_ranger)
Bases: object

class FakeBranch(name, values, event_ranger)
Bases: object

array(entrystart=None, entrystop=None, blocking=True, **kws)

class PandasWrap(owner)
Bases: object

df(*args, **kwargs)

array(*args, **kwargs)

arrays(*args, **kwargs)

itervalues(*args, **kwargs)

new_variable(name, value)

pandas

reset_cache()

update_array_args(kwargs)

fast_carpenter.tree_wrapper.recursive_type_wrap(array)

class fast_carpenter.tree_wrapper.wrapped_asgenobj(cls, context, skipbytes)
Bases: uproot.interp.objects.asgenobj

finalize(*args, **kwargs)

fast_carpenter.tree_wrapper.wrapped_interpret(branch, *args, **kwargs)

8.2.6 fast_carpenter.utils module

fast_carpenter.utils.mkdir_p(path)

8.2.7 fast_carpenter.version module

Defines version of codebase

fast_carpenter.version.split_version(version)
Split a semantic version string into a version_info tuple

8.2. Submodules 43

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

fast-carpenter Documentation, Release 0.17.4

44 Chapter 8. fast_carpenter package

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

45

fast-carpenter Documentation, Release 0.17.4

46 Chapter 9. Indices and tables

Python Module Index

f
fast_carpenter, 21
fast_carpenter.backends, 26
fast_carpenter.backends.alphatwirl, 26
fast_carpenter.define, 27
fast_carpenter.define.reductions, 29
fast_carpenter.define.systematics, 29
fast_carpenter.define.variables, 30
fast_carpenter.event_builder, 41
fast_carpenter.expressions, 42
fast_carpenter.help, 42
fast_carpenter.masked_tree, 42
fast_carpenter.selection, 31
fast_carpenter.selection.filters, 33
fast_carpenter.selection.stage, 34
fast_carpenter.summary, 36
fast_carpenter.summary.aghast, 38
fast_carpenter.summary.binned_dataframe,

39
fast_carpenter.summary.binning_config,

40
fast_carpenter.summary.event_level_dataframe,

41
fast_carpenter.summary.import_aghast,

41
fast_carpenter.tree_wrapper, 43
fast_carpenter.utils, 43
fast_carpenter.version, 43

47

fast-carpenter Documentation, Release 0.17.4

48 Python Module Index

Index

Symbols
__init__(), 15

A
add() (fast_carpenter.selection.filters.Counter method),

33
AghastCatcher (class in

fast_carpenter.summary.import_aghast),
41

All (class in fast_carpenter.selection.filters), 33
Any (class in fast_carpenter.selection.filters), 33
apply_mask() (fast_carpenter.masked_tree.MaskedUprootTree

method), 42
array() (fast_carpenter.masked_tree.MaskedUprootTree

method), 42
array() (fast_carpenter.tree_wrapper.WrappedTree

method), 43
array() (fast_carpenter.tree_wrapper.WrappedTree.FakeBranch

method), 43
arrays() (fast_carpenter.masked_tree.MaskedUprootTree

method), 42
arrays() (fast_carpenter.tree_wrapper.WrappedTree

method), 43
AtuprootContext (class in

fast_carpenter.backends.alphatwirl), 26

B
BadBinnedDataframeConfig, 40
BadSystematicWeightsConfig, 29
BadVariablesConfig, 30
BaseFilter (class in fast_carpenter.selection.filters),

33
BEventsWrapped (class in

fast_carpenter.event_builder), 41
bin_one_dimension() (in module

fast_carpenter.summary.aghast), 38
bin_one_dimension() (in module

fast_carpenter.summary.binning_config),
40

BinnedDataframe (class in fast_carpenter), 24
BinnedDataframe (class in fast_carpenter.summary),

36
BinnedDataframe (class in

fast_carpenter.summary.binned_dataframe), 39
build_selection() (in module

fast_carpenter.selection.filters), 34
BuildAghast (class in fast_carpenter), 26
BuildAghast (class in fast_carpenter.summary), 36
BuildAghast (class in

fast_carpenter.summary.aghast), 38

C
CalculationCfg (class in

fast_carpenter.define.variables), 30
class_name (fast_carpenter.help.StageGuidanceHelper

attribute), 42
collect() (fast_carpenter.backends.alphatwirl.DummyCollector

method), 27
collect() (fast_carpenter.summary.aghast.Collector

method), 38
collect() (fast_carpenter.summary.binned_dataframe.Collector

method), 40
collect() (fast_carpenter.summary.event_level_dataframe.Collector

method), 41
Collector (class in fast_carpenter.summary.aghast),

38
Collector (class in

fast_carpenter.summary.binned_dataframe), 40
Collector (class in

fast_carpenter.summary.event_level_dataframe),
41

collector() (fast_carpenter.BinnedDataframe
method), 26

collector() (fast_carpenter.BuildAghast method), 26
collector() (fast_carpenter.CutFlow method), 24
collector() (fast_carpenter.selection.CutFlow

method), 32
collector() (fast_carpenter.selection.stage.CutFlow

method), 35

49

fast-carpenter Documentation, Release 0.17.4

collector() (fast_carpenter.summary.aghast.BuildAghast
method), 38

collector() (fast_carpenter.summary.binned_dataframe.BinnedDataframe
method), 40

collector() (fast_carpenter.summary.BinnedDataframe
method), 37

collector() (fast_carpenter.summary.BuildAghast
method), 36

collector() (fast_carpenter.summary.event_level_dataframe.EventByEventDataframe
method), 41

collector() (fast_carpenter.summary.EventByEventDataframe
method), 38

columns (fast_carpenter.selection.filters.BaseFilter at-
tribute), 33

combined_dataframes() (in module
fast_carpenter.summary.binned_dataframe), 40

complete_axes() (in module
fast_carpenter.summary.aghast), 38

contents (fast_carpenter.BuildAghast attribute), 26
contents (fast_carpenter.summary.aghast.BuildAghast

attribute), 38
contents (fast_carpenter.summary.BuildAghast

attribute), 36
convert_to_counters() (in module

fast_carpenter.summary.aghast), 38
Counter (class in fast_carpenter.selection.filters), 33
counts (fast_carpenter.selection.filters.Counter at-

tribute), 33
create_binning_list() (in module

fast_carpenter.summary.binning_config),
40

create_file_format() (in module
fast_carpenter.summary.binning_config),
40

create_one_dimension() (in module
fast_carpenter.summary.binning_config),
40

create_weights() (in module
fast_carpenter.summary.binning_config),
41

cut-flow, 19
CutFlow (class in fast_carpenter), 23
CutFlow (class in fast_carpenter.selection), 31
CutFlow (class in fast_carpenter.selection.stage), 34

D
data-space, 19
dataframe, 19
dataset config, 19
Define (class in fast_carpenter), 21
Define (class in fast_carpenter.define), 27
Define (class in fast_carpenter.define.variables), 30
DefinePandas (class in

fast_carpenter.define.variables), 31

densify_dataframe() (in module
fast_carpenter.summary.binned_dataframe), 40

df() (fast_carpenter.masked_tree.MaskedUprootTree.PandasWrap
method), 42

df() (fast_carpenter.tree_wrapper.WrappedTree.PandasWrap
method), 43

docstring() (fast_carpenter.help.StageGuidanceHelper
method), 42

DummyCollector (class in
fast_carpenter.backends.alphatwirl), 26

E
entries_in_block (fast_carpenter.event_builder.EventRanger

attribute), 41
evaluate() (in module fast_carpenter.expressions),

42
event(), 15
event() (fast_carpenter.BinnedDataframe method), 26
event() (fast_carpenter.BuildAghast method), 26
event() (fast_carpenter.CutFlow method), 24
event() (fast_carpenter.Define method), 22
event() (fast_carpenter.define.Define method), 27
event() (fast_carpenter.define.systematics.SystematicWeights

method), 30
event() (fast_carpenter.define.SystematicWeights

method), 28
event() (fast_carpenter.define.variables.Define

method), 31
event() (fast_carpenter.define.variables.DefinePandas

method), 31
event() (fast_carpenter.selection.CutFlow method), 32
event() (fast_carpenter.selection.SelectPhaseSpace

method), 33
event() (fast_carpenter.selection.stage.CutFlow

method), 35
event() (fast_carpenter.selection.stage.SelectPhaseSpace

method), 36
event() (fast_carpenter.SelectPhaseSpace method), 24
event() (fast_carpenter.summary.aghast.BuildAghast

method), 38
event() (fast_carpenter.summary.binned_dataframe.BinnedDataframe

method), 40
event() (fast_carpenter.summary.BinnedDataframe

method), 38
event() (fast_carpenter.summary.BuildAghast

method), 36
event() (fast_carpenter.summary.event_level_dataframe.EventByEventDataframe

method), 41
event() (fast_carpenter.summary.EventByEventDataframe

method), 38
event() (fast_carpenter.SystematicWeights method),

23
EventBuilder (class in fast_carpenter.event_builder),

41

50 Index

fast-carpenter Documentation, Release 0.17.4

EventByEventDataframe (class in
fast_carpenter.summary), 38

EventByEventDataframe (class in
fast_carpenter.summary.event_level_dataframe),
41

EventRanger (class in fast_carpenter.event_builder),
41

execute() (in module
fast_carpenter.backends.alphatwirl), 27

explode() (in module
fast_carpenter.summary.binned_dataframe), 40

expression, 19
expression (fast_carpenter.define.variables.CalculationCfg

attribute), 30

F
fast_carpenter (module), 21
fast_carpenter.backends (module), 26
fast_carpenter.backends.alphatwirl (mod-

ule), 26
fast_carpenter.define (module), 27
fast_carpenter.define.reductions (mod-

ule), 29
fast_carpenter.define.systematics (mod-

ule), 29
fast_carpenter.define.variables (module),

30
fast_carpenter.event_builder (module), 41
fast_carpenter.expressions (module), 42
fast_carpenter.help (module), 42
fast_carpenter.masked_tree (module), 42
fast_carpenter.selection (module), 31
fast_carpenter.selection.filters (mod-

ule), 33
fast_carpenter.selection.stage (module),

34
fast_carpenter.summary (module), 36
fast_carpenter.summary.aghast (module), 38
fast_carpenter.summary.binned_dataframe

(module), 39
fast_carpenter.summary.binning_config

(module), 40
fast_carpenter.summary.event_level_dataframe

(module), 41
fast_carpenter.summary.import_aghast

(module), 41
fast_carpenter.tree_wrapper (module), 43
fast_carpenter.utils (module), 43
fast_carpenter.version (module), 43
fill_missing (fast_carpenter.define.variables.CalculationCfg

attribute), 30
finalize() (fast_carpenter.tree_wrapper.wrapped_asgenobj

method), 43

format_signature() (in module
fast_carpenter.help), 42

full_evaluate() (in module
fast_carpenter.define.variables), 31

G
get_alphatwirl() (in module

fast_carpenter.backends), 26
get_backend() (in module fast_carpenter.backends),

26
get_branches() (in module

fast_carpenter.expressions), 42
get_coffea() (in module fast_carpenter.backends),

26
get_pandas_reduction() (in module

fast_carpenter.define.reductions), 29
get_signature() (in module fast_carpenter.help),

42
get_unweighted_increment()

(fast_carpenter.selection.filters.Counter static
method), 33

get_weighted_increment()
(fast_carpenter.selection.filters.Counter static
method), 33

H
handle_config() (in module

fast_carpenter.selection.filters), 34
help_stages() (in module fast_carpenter.help), 42

I
increment() (fast_carpenter.selection.filters.Counter

method), 33
increment_counters()

(fast_carpenter.selection.filters.BaseFilter
method), 33

index_values (fast_carpenter.selection.filters.BaseFilter
attribute), 33

itervalues() (fast_carpenter.tree_wrapper.WrappedTree
method), 43

J
jagged array, 19

M
mask (fast_carpenter.define.variables.CalculationCfg at-

tribute), 30
mask (fast_carpenter.masked_tree.MaskedUprootTree

attribute), 42
mask_df() (in module fast_carpenter.masked_tree), 42
MaskedUprootTree (class in

fast_carpenter.masked_tree), 42
MaskedUprootTree.PandasWrap (class in

fast_carpenter.masked_tree), 42

Index 51

fast-carpenter Documentation, Release 0.17.4

matches() (fast_carpenter.help.StageGuidanceHelper
method), 42

merge() (fast_carpenter.BinnedDataframe method), 26
merge() (fast_carpenter.BuildAghast method), 26
merge() (fast_carpenter.CutFlow method), 24
merge() (fast_carpenter.selection.CutFlow method), 32
merge() (fast_carpenter.selection.filters.BaseFilter

method), 33
merge() (fast_carpenter.selection.stage.CutFlow

method), 35
merge() (fast_carpenter.summary.aghast.BuildAghast

method), 38
merge() (fast_carpenter.summary.binned_dataframe.BinnedDataframe

method), 40
merge() (fast_carpenter.summary.BinnedDataframe

method), 38
merge() (fast_carpenter.summary.BuildAghast

method), 36
merge() (fast_carpenter.summary.event_level_dataframe.EventByEventDataframe

method), 41
merge() (fast_carpenter.summary.EventByEventDataframe

method), 38
mkdir_p() (in module fast_carpenter.utils), 43

N
name (fast_carpenter.define.variables.CalculationCfg at-

tribute), 30
new_variable() (fast_carpenter.tree_wrapper.WrappedTree

method), 43

O
OuterCounterIncrementer (class in

fast_carpenter.selection.filters), 33

P
pandas (fast_carpenter.masked_tree.MaskedUprootTree

attribute), 42
pandas (fast_carpenter.tree_wrapper.WrappedTree at-

tribute), 43
parameters() (fast_carpenter.help.StageGuidanceHelper

method), 42
processing config, 19
processing stage, 19

R
recursive_type_wrap() (in module

fast_carpenter.tree_wrapper), 43
ReduceSingleCut (class in

fast_carpenter.selection.filters), 33
reduction (fast_carpenter.define.variables.CalculationCfg

attribute), 30
reset_cache() (fast_carpenter.tree_wrapper.WrappedTree

method), 43

reset_mask() (fast_carpenter.masked_tree.MaskedUprootTree
method), 42

S
safe_and() (in module

fast_carpenter.selection.filters), 34
safe_or() (in module fast_carpenter.selection.filters),

34
SelectPhaseSpace (class in fast_carpenter), 24
SelectPhaseSpace (class in

fast_carpenter.selection), 32
SelectPhaseSpace (class in

fast_carpenter.selection.stage), 35
set_owner() (fast_carpenter.event_builder.EventRanger

method), 41
SingleCut (class in fast_carpenter.selection.filters), 33
split_version() (in module

fast_carpenter.version), 43
stage (fast_carpenter.help.StageGuidanceHelper at-

tribute), 42
StageGuidanceHelper (class in

fast_carpenter.help), 42
start_entry (fast_carpenter.event_builder.EventRanger

attribute), 41
stop_entry (fast_carpenter.event_builder.EventRanger

attribute), 41
SystematicWeights (class in fast_carpenter), 22
SystematicWeights (class in fast_carpenter.define),

27
SystematicWeights (class in

fast_carpenter.define.systematics), 29

T
to_dataframe() (fast_carpenter.selection.filters.BaseFilter

method), 33

U
unmasked_array() (fast_carpenter.masked_tree.MaskedUprootTree

method), 42
unmasked_arrays()

(fast_carpenter.masked_tree.MaskedUprootTree
method), 42

update_array_args()
(fast_carpenter.tree_wrapper.WrappedTree
method), 43

V
valid_ext (fast_carpenter.summary.binned_dataframe.Collector

attribute), 40
values (fast_carpenter.selection.filters.BaseFilter at-

tribute), 33

52 Index

fast-carpenter Documentation, Release 0.17.4

W
wrapped_asgenobj (class in

fast_carpenter.tree_wrapper), 43
wrapped_interpret() (in module

fast_carpenter.tree_wrapper), 43
WrappedTree (class in fast_carpenter.tree_wrapper),

43
WrappedTree.FakeBranch (class in

fast_carpenter.tree_wrapper), 43
WrappedTree.PandasWrap (class in

fast_carpenter.tree_wrapper), 43

Index 53

	From Pypi
	From Source
	Key Concepts
	Goals of fast-carpenter
	From the user’s perspective
	From the code and development perspective

	Overall approach for data-processing
	Step 1: Create dataset configs
	Step 2: Write a processing config
	Step 3: Run fast_carpenter
	Step 4: Produce plots

	Command-line Usage
	fast_curator
	fast_curator_check
	fast_carpenter
	fast_plotter

	The Processing Config
	Anatomy of the config
	Built-in Stages
	Used-defined Stages

	Example repositories
	Related Presentations

	Glossary
	fast_carpenter package
	Subpackages
	fast_carpenter.backends package
	fast_carpenter.define package
	fast_carpenter.selection package
	fast_carpenter.summary package

	Submodules
	fast_carpenter.event_builder module
	fast_carpenter.expressions module
	fast_carpenter.help module
	fast_carpenter.masked_tree module
	fast_carpenter.tree_wrapper module
	fast_carpenter.utils module
	fast_carpenter.version module

	Indices and tables
	Python Module Index
	Index

